Concept explainers
(a)
Interpretation:
Diastereoisomers for given compound has to be drawn.
Concept introduction:
Stereoisomers are isomers which have different spatial arrangement in spite of same bond connectivity. Stereoisomers are due to the presence of stereocenter. Stereocenter may be an atom axis (bond) or plane from which interchanging of two groups leads to stereoisomers.
Asymmetric center is a stereocenter which arises to hydrocarbons if the carbon is bonded to four different groups.
The equation for finding Stereoisomers from number of asymmetric centers in compounds is
Diastereomers are stereoisomers present in a compound which having more than one asymmetric centers, in which they are neither mirror images nor identical. If two stereoisomers are not enantiomers, then they are Diastereomers.
(b)
Interpretation:
Diastereoisomers for given compound has to be drawn.
Concept introduction:
Stereoisomers are isomers which have different spatial arrangement in spite of same bond connectivity. Stereoisomers are due to the presence of stereocenter.
Stereoisomers are isomers which have different spatial arrangement in spite of same bond connectivity. Stereoisomers are due to the presence of stereocenter. Stereocenter may be an atom axis (bond) or plane from which interchanging of two groups leads to stereoisomers.
Asymmetric center is a stereocenter which arises to hydrocarbons if the carbon is bonded to four different groups.
The equation for finding Stereoisomers from number of asymmetric centers in compounds is
Diastereomers are stereoisomers present in a compound which having more than one asymmetric centers, in which they are neither mirror images nor identical. If two stereoisomers are not enantiomers, then they are Diastereomers.
(c)
Interpretation:
Diastereoisomers for given compound has to be drawn.
Concept introduction:
Stereoisomers are isomers which have different spatial arrangement in spite of same bond connectivity. Stereoisomers are due to the presence of stereocenter. Stereocenter may be an atom axis (bond) or plane from which interchanging of two groups leads to stereoisomers.
Asymmetric center is a stereocenter which arises to hydrocarbons if the carbon is bonded to four different groups.
The equation for finding Stereoisomers from number of asymmetric centers in compounds is
Diastereomers are stereoisomers present in a compound which having more than one asymmetric centers, in which they are neither mirror images nor identical. If two stereoisomers are not enantiomers, then they are Diastereomers. So, cis-trans isomers are diastereomers.
(d)
Interpretation:
Diastereoisomers for given compound has to be drawn.
Concept introduction:
Stereoisomers are isomers which have different spatial arrangement in spite of same bond connectivity. Stereoisomers are due to the presence of stereocenter. Stereocenter may be an atom axis (bond) or plane from which interchanging of two groups leads to stereoisomers.
Asymmetric center is a stereocenter which arises to hydrocarbons if the carbon is bonded to four different groups.
The equation for finding Stereoisomers from number of asymmetric centers in compounds is
Diastereomers are stereoisomers present in a compound which having more than one asymmetric centers, in which they are neither mirror images nor identical. If two stereoisomers are not enantiomers, then they are Diastereomers.
The pair of Enantiomers non-superimposable mirror images of each other.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Modified Mastering Chemistry with Pearson eText -- Standalone Access Card -- for Organic Chemistry (8th Edition)
- The compounds given below are: identical diastereomers enantiomers cannot be determinedarrow_forwardWhat is the relationship between the two compounds shown below? A) Different compounds B) Enantiomers C) Identical compounds D) Diastereomersarrow_forwardIdentify the relationship between these two structures. F OH НО. CH3 H CH3 H H₂C- H₂CH Diastereomers The same compounds O Unrelated compounds O Enantiomers יד -H F Iarrow_forward
- What is the relationship between the two compounds shown below? ОН ОН Но constitutional isomers enantiomers diastereomers they are the same compoundarrow_forwardNonearrow_forwardWhat is the relationship in the following pairs? A) Identical B) Enantiomers C) Diastereomers D) Consitutionalarrow_forward
- Draw a diastereomer for each of the following compounds: Part A CH3 HA OH Br C. H CH3arrow_forwardDraw all the possible stereoisomers for each compound and label pairs of enantiomers and diastereomers.arrow_forwardWhat is the relationship in the following pairs? A) Identical B) Enantiomers C) Diastereomers D) Constitutionalarrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningMacroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning