University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.69PP
To determine
To explain: The comparison between dots that are the same size but made from different materials. A dot of material 1 emits a longer wavelength of photon as compared to material 2.
List the possibilities from the following options:
(a) The mass of the confined particle in material 1 is greater.
(b) The mass of the confined particle in material 2 is greater.
(c) The confined particles make more transitions per second in material 1.
(d) The confined particles make more transitions per second in material 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron confined to a box absorbs a photon with wavelength λ. As a result, the electron makes a transition from the n = 1 state to the n = 3 state. (a) Find the length of the box. (b) What is the wavelength λ' of the photon emitted when the electron makes a transition from the n = 3 state to the n = 2 state?
A particle is restricted to a one-dimensional box of length L. It absorbs a photon whose wavelength is 5.00 nm and jumps from the ground state to the n = 6 level. It then jumps back to the n = 3 state. Determine the wavelength (in nm) of the emitted photon.
(a) When an electron trapped in a one-dimensional box transitions from its n = 2 state to its n = 1 state, a photon with a wavelength of 643.0 nm is emitted. What is the length of the box (in nm)?
nm
(b) What If? If electrons in the box also occupied the n = 3 state, what other wavelengths of light (in nm) could possibly be emitted? Enter the shorter wavelength first.
shorter wavelength
nm
longer wavelength
nm
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?arrow_forwardAn electron is trapped in a one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon? wavelength: .0306 Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions to the ground state. wavelength of least energetic photon: wavelength of most energetic photon: .0753 Incorrect .0709 m Incorrect m Earrow_forwardWhen a particle of mass 9.1 × 10^-28 g in a certain one- dimensional box goes from the n = 5 level to the n = 2 level, it emits a photon of frequency 6.0 × 10^16 /s . Find the length of the box.arrow_forward
- A laser emits a beam of green visible light of wavelength 550 nm. When the beam strikes the surface of a metal, electrons are ejected from the surface. Which of the following statement(s) is/are INCORRECT? Check all that apply. Explain your reasoning for all choices. a) If the green laser emits twice the number of photons per second, the electrons will be ejected from the surface with twice the kinetic energy. b) If the green laser emits twice the number of photons per second, the number of electrons ejected per second from the surface will double. c) For the given green laser, replacing the metal surface with another metal of lower work function (binding energy) will increase the kinetic energy of the ejected electrons. d) For the given green laser, replacing the metal surface with another metal of lower work function (binding energy) will decrease the kinetic energy of the ejected electrons. e) For the given green laser, replacing the metal surface with another metal of lower work…arrow_forwardA general expression for the energy levels of oneelectron atoms and ions is Here µ is the reduced mass of the atom, given by µ = m1m2/(m1 +m2m2), where m1 is the mass of the electron and m2 is the mass of the nucleus; ke is the Coulomb constant; and q1 and q2 are the charges of the electron and the nucleus, respectively. The wavelength for the n = 3 to n = 2 transition of the hydrogen atom is 656.3 nm (visible red light). What are the wavelengths for this same transition in (a) positronium, which consists of an electron and a positron, and (b) singly ionized helium? Note: A positron is a positively charged electron.arrow_forwardProblem 4: A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle + from its original direction, what is wavelength of the photon after the collision. h= 6.626 x 10:34 J·s and c = 3.0 x 108 m/s.arrow_forward
- You want to use a microscope to study the structure of a mitochondrion about 1.00 um in size. To be able to observe small details within the mitochondrion, you want to use a wavelength of 0.0500 nm. If your microscope uses light of this wavelength, what is the momentum p of a photon? p = kg-m/s If your microscope uses light of this wavelength, what is the energy E of a photon? E = If instead your microscope uses electrons of this de Broglie wavelength, what is the momentum p. of an electron? Pe = kg-m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the velocity v of an electron? v = m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the kinetic energy K of an electron? K = What advantage do your calculations suggest electrons have compared to photons? O An electron's charge allows it to attach to observed particles, whereas a photon's electric neutrality prevents it from moving close enough to the observed particles…arrow_forwardA photon with wavelength of 0.1100 nmnm collides with a free electron that is initially at rest. After the collision, the photon's wavelength is 0.1142 nmnm. A) What is the kinetic energy of the electron after the collision? Express your answer in electronvolts. B) What is the speed of the electron after the collision? Express your answer with the appropriate units. C) If the electron is suddenly stopped (for example, in a solid target), all of its kinetic energy is used to create a photon. What is the wavelength of this photon? Express your answer with the appropriate units.arrow_forwardAn electron is trapped in a is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon? one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon wavelength: Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions to the ground state. wavelength of least energetic photon: m wavelength of most energetic photon: m marrow_forward
- A photon with wavelength 0.1100 nm collides with a free electron that is initially at rest. After the collision the wavelength is 0.1132 nm. (a) What is the kinetic energy of the electron after the collision? What is its speed? (b) If the electron is suddenly stopped (for example, in a solid target), all of its kinetic energy is used to create a photon. What is the wavelength of this photon?arrow_forwardLight of wavelength 400 nm, 620 nm and 750 nm is incident on a metal. Electrons are found to either be emitted at rest or emitted with one velocity, which of the following is the most likely scenario. The work function is less than any of these photon energies. The work function is more than any of these photon energies. The energy of the photon for 750 nm light corresponds to the work function of the material. The energy of the photon for 620 nm light corresponds to the work function of the material. The energy of the photon for 400 nm light corresponds to the work function of the material.arrow_forwardFor your work in a mass spectrometry lab, you are investigating the absorption spectrum of one-electron ions. To maintain the atoms in an ionized state, you hold them at low density in an ion trap, a device that uses a configuration of electric fields to confine ions. The majority of the ions are in their ground state, so that is the initial state for the absorption transitions that you observe. (a) If the longest wavelength that you observe in the absorption spectrum is 13.56 nm, what is the atomic number Z for the ions? (b) What is the next shorter wavelength that the ions will absorb? (c) When one of the ions absorbs a photon of wavelength 6.78 nm, a free electron is produced. What is the kinetic energy (in electron volts) of the electron?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning