Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.9P
To determine
(a)
The inductance value of every conductor due to internal flux linkages only.
The inductance value of every conductor due to both external as well as internal flux linkages only.
Total inductance of the line.
Also, compare the results with the case when the temperature is not changed.
To determine
(b)
The inductance value of every conductor due to internal flux linkages only.
The inductance value of every conductor due to both external as well as internal flux linkages only.
Total inductance of the line.
Also, compare the results with the case when the temperature is not changed.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Don't use ai to answer I will report you answer
5.7 Design an STS switch for 128 primary TDM signals of the CCITT hierarchy (30
voice channels per input). Blocking should be less than 0.002 and the loading is
0.2 erlang per channel. How many time slot interchange modules are needed?
What is the complexity of the switch?
Repeat Problem 5.7 for a TST design.
Need a solution please according to the book the answers are , number of memory bits is 48000 and complexity is 1504
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Similar questions
- For the single-line diagram in the image, convert the zero-, positive-, and negative-sequence reactance date to per-unit using the given base quantities. Use subtransient machine reactances.Then, USE PowerWorld Simulator, create the generator, transmission line, and transformer input data files.Next, run the Simulator to compute subtransient fault currents for (1) single line-to-ground, (2) line-to-line, and (3) double line-to-ground bolted faults at each bus. Assume 1.0 per unit prefault voltage and neglect prefault load currents and all losses. Note: L2 = 25 kmShow input data files (machine, transmission line and transformers), output data (fault currents, bus volatges and line currents), and screenshots of the Simulation.arrow_forwardAnswer True or False, then correct errors or explain if any: 1. The term pole in filter terminology refers to the feedback circuit. 2, A voltage shunt feedback with Ai-10, A-20, p 0.45, then Aif will be 1. 3. The integrator Op-Amp circuit can be used to produce square waves. 4. The equivalent circuit of the crystal oscillator is series and parallel (R, C) components. 5. The transistor in a class A power amplifier conducts for the entire input cycle. 6. Bypass capacitors in an amplifier determine the low and high-frequency responses. 7. The midrange voltage gain of an amplifier is 100. The input RC circuit has a lower critical frequency of 1 kHz. The actual voltage gain at f- 100 Hz is 100. 8. The Bessel filter types produce almost ripple frequency response. 9. RC phase shift oscillators are based on both positive and negative feedback circuits. 10. In a high-pass filter, the roll-off region occurs above the critical frequency,arrow_forwardQ.1. Answer True or False and correct errors if found 1. In a certain Op-Amp. if Ad=3500, Ac=0.35, the CMRR=100dB. 2. The voltage series feedback can increase both input and output impedances. 3. A two-pole Sallen-Key high-pass filter contains one capacitor and two resistors. 4. The main feature of a crystal oscillator is the high frequency operation. Each transistor in a class B power amplifier conducts for the entire input cycle. ✓ The Q-point must be centered on the load line for maximum class A output signal swing 7. The differentiator Op-Amp can convert the triangle waveform into sinewave. ✗Class AB power amplifier eliminates crossover distortion found in pure class A. 9. Wien-bridge oscillators are based on positive feedback circuits. 10. The band-reject filter is composed of multiplication of LPF and HPF.arrow_forward
- Solve by Hand not using Chatgpt or AIarrow_forwardA. The ECG signal of a person shows an irregular heartbeat of 180 beats per minute. You areasked to come up with a system that digitises this signal, using an analog-to-digitalconverter (ADC) with a reference voltage of 5 V. The digitised signal should have a resolutionof 1 mV or better.i) How many samples per second should your system take in order to fully capture the ECGsignal?ii) What should the ADC’s resolution in bits be? Alternatively, how many quantisation levelsshould the ADC have; or how many bits per sample should the ADC have? B. You have successfully designed your ECG signal capture device. However, the person fromQuestion A is being examined in a room with fluorescent lights which have recently startedbuzzing. The digitised ECG signal appears to be very noisy, and the medical doctors arefinding it difficult to diagnose the patient. You suspect interference from the electrical mainsis to blame.You also notice that the ECG signal is very faint and not making full use of…arrow_forwardControls Systemsarrow_forward
- Question about Controls Systemsarrow_forwardA chemical processing plant requires a simplified safety control system to monitor critical conditions in one of its reactors. The system must evaluate three key parameters and activate two response levels. A combinational circuit with 3 sensors and 2 alarms needs to be designed for this purpose. Sensors: A: Reactor temperature (0 = normal, 1 = high) B: Reactor pressure (0 = normal, 1 = high) C: Mixture pH level (0 = normal, 1 = out of range) Alarms: X: Warning alarm Y: Activation of the emergency shutdown system System requirements: 1. The warning alarm (X) should activate when: At least two parameters are out of range. • Or when the temperature is high (A = 1) and any other parameter is out of range. 2. The emergency shutdown system (Y) must activate when: • All parameters are out of range simultaneously (A = 1, B = 1, C=1). • Or when the temperature and pressure are high simultaneously (A = 1 and B = 1), regardless of the pH level. Request: 1. Design the logic circuit for this…arrow_forwardAn industrial soft drink production plant needs to implement a quality control system for its bottling line. The system must monitor four critical parameters and activate different alarms depending on the conditions detected. It is required to design a digital circuit with 4 inputs and 3 outputs for this purpose. Inputs: A: Carbonation level (0 = normal, 1 = high) B: Liquid temperature (0 = normal, 1 = elevated) C: Line pressure (0 = normal, 1 = low) D: Filling speed (0 = normal, 1 = low) Outputs: X: Minor adjustment alarm (triggered when an odd number of parameters are out of range) Y: Major revision alarm (triggered when at least three parameters are out of range) Z: Adjacent parameters alarm (triggered when exactly two adjacent parameters are out of range System requirements: 1. The minor adjustment alarm (X) should activate when an odd number of parameters are out of range, indicating the need to make minor adjustments to the process. 2. The major overhaul alarm (Y) should activate…arrow_forward
- Please I need accurate answers , according to thr book the answers for STS part are (a) 41 , (b) 10828arrow_forwardAn industrial soft drink production plant needs to implement a quality control system for its bottling line. The system must monitor four critical parameters and activate different alarms depending on the conditions detected. Design a digital circuit with 4 inputs and 3 outputs for this purpose, Design the logic circuit for this control system using Karnaugh maps to simplify the Boolean functions of each output. The final design must be efficient and use as few logic gates as possible. Inputs: A: Carbonation level (0 = normal, 1 = high) B: Liquid temperature (0 = normal, 1 = elevated) C: Line pressure (0 = normal, 1 = low) D: Filling speed (0 = normal, 1 = low) Outputs: X: Minor adjustment alarm (triggered when an odd number of parameters are out of range) Y: Major revision alarm (triggered when at least three parameters are out of range) Z: Adjacent parameters alarm (triggered when exactly two adjacent parameters are out of range)arrow_forwardPlease solve it for STS and TSTarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning