Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 45P
(a)
To determine
The weight of the astronaut including the backpack etc on Earth.
(b)
To determine
The total weight of the astronaut on the Moon.
(c)
To determine
The required upward buoyancy force of water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) If a man weighs 900 N on the Earth, what would he weigh on Jupiter, where the free-fall acceleration is 25.9 m/s2?
A 1 000-kg car is pulling a 300-kg trailer. Together, the car and trailer move forward with an acceleration of 2.15 m/s2. Ignore any force of air drag on the car and all friction forces on the trailer. Determine:
(a) the net force on the car,
(b) the net force on the trailer,
(c) the force exerted by the trailer on the car, and
(d) the resultant force exerted by the car on the road.
Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut's acceleration is measured to be 0.983 m/s (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of the system (astronaut and spaceship) that would be measured by a nearby observer. (c) Discuss how this would affect the measurement of the astronaut's acceleration. Propose a method by which recoil of the vehicle is avoided.
Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses and adjust their diet. One
way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 45.0 N is exerted, and an astronaut's acceleration is measured
to be 0.662 m/s².
(a) Calculate her mass (in kg).
67.98
kg
(b) By exerting a force on the astronaut, the vehicle in which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of the spaceship
that would be measured by a nearby observer. (Enter the magnitude. Use the following as necessary: mastro
for the astronaut's mass, mship
for the spaceship's mass, and a astro
for the
magnitude of the astronaut's acceleration. Do not substitute numerical values; use variables only.)
mastro“ astro
a ship
aship
Chapter 4 Solutions
Physics for Scientists and Engineers
Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10P
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The United States possesses the ten largest warships in the world, aircraft carriers of the Nimitz class. Suppose one of the ships bobs up to float 11.0 cm higher in the ocean water when 50 fighters take off from it in a time interval of 25 min, at a location where the free-fall acceleration is 9.78 m/s2. The planes have an average laden mass of 29 000 kg. Find the horizontal area enclosed by the waterline of the ship.arrow_forwardIn Example 4.6, we investigated the apparent weight of a fish in an elevator. Now consider a 72.0-kg man standing on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.20 m/s in 0.800 s. It travels with this constant speed for the next 5.00 s. The elevator then undergoes a uniform acceleration in the negative y direction for 1.50 s and comes to rest. What does the spring scale register (a) before the elevator starts to move, (b) during the first 0.800 s, (c) while the elevator is traveling at constant speed, and (d) during the time interval it is slowing down?arrow_forwardA 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.arrow_forward
- Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut's acceleration is measured to be 0.893 m/s². (a) Calculate her mass.arrow_forwardAstronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut’s acceleration is measured to be 0.893 m/s2 . (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of the system (astronaut and spaceship) that would be measured by a nearby observer. (c) Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method by which recoil of the vehicle is avoided.arrow_forwardAstronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut's acceleration is measured to be 0.983 m/s. (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of the system (astronaut and spaceship) that would be measured bya nearby observer. (c) Discuss how this would affect the measurement of the astronaut's acceleration. Propose a method by which recoil of the vehicle is avoided.arrow_forward
- A 50 kg student enters a 1000 kg elevator at rest. When the elevator begins to move, she has an apparent weight of 600 N in the initial 3.0 s. (a) What is the acceleration of the elevator, the distance it travels, and in what direction at the end of these 3.0 s? After a certain time, without the elevator stopping, she suddenly has an apparent weight of 400N, also for 3.0 s. (b) What is the acceleration of the elevator, the distance traveled by it and in what direction during these 3.0 s? (c) Explain how these two accelerations affect the motion.(Consider g = 10, 0 m/s2 .) Translated with www.DeepL.com/Translator (free version)arrow_forwardSince astronauts in orbit are apparently weightless, a clever method of measuring their masses is needed to monitor their mass gains or losses to adjust diets. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 57.5 N is exerted and the astronaut's acceleration is measured to be 0.880 m/s². Calculate her mass (in kg). kg By exerting a force on the astronaut, the vehicle in which they orbit experiences an equal and opposite force. Discuss how this would affect the measurement of the astronaut's acceleration. Propose a method in which recoil of the vehicle is avoided.arrow_forwardThe International Space Station operates at an altitude of 350 km. Plans for the final construction show that material of weight 4.22 x 10° N, measured at the Earth's surface, will have been lifted off the surface by various spacecraft during the construction process. What the weight of the space station when in orbit? SOLUTION Conceptualize The mass of the space station is fixed; it is independent of its location. Based on the discussion in this section, we realize that the value of g will be ---Select-- v at the height of the space station's orbit. Therefore, the weight of the space station will be -Select-- v than that at the surface of the Earth. Categorize We model the space station as a particle in a gravitational -Select--- V Analyze From the particle in a field model, find the mass of the space station (in kg) from its weight at the surface of the Earth: m = kg Use the equation for the free-fall acceleration with h = 350 km to find the magnitude of the gravitational field (in…arrow_forward
- In a laboratory experiment, an initially stationary electron (mass = 9.11 x 10–31 kg) undergoes a constant acceleration through 2.4 cm, reaching a speed of 5.7 x 106 m/s at the end of that distance. What are (a) the magnitude of the force accelerating the electron and (b) the electron's weight?arrow_forwardIn an investigation a student placed a 0.85 kg cart on a table. They tie one end of a light string (assume mstring= 0kg) to the front of a cart, passes it through a pulley and then onto a 0.50 kg hanging mass. Assume there is no friction. Determine the magnitude of the acceleration of the cart. Determine the magnitude of the tension.arrow_forwardA large crate of mass m is placed on the back of a truck but not tied down. As the truck accelerates forward with an acceleration a, the crate remains at rest relative to the truck. What force causes the crate to accelerate forward? (a) the normal force (b) the force of gravity (c) the force of friction between the crate and the floor of the truck (d) the “ma” force (e) none of thesearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY