Fluid Mechanics
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.17P

An excellent approximation for the two-dimensional incompressible laminar boundary layer on the flat surface in Fig, P4.17 is u U 2 y δ 2 y 3 δ 3 + y 4 δ 4 for y δ where δ = C x 1 / 2 , C = const

(a) Assuming a no-slip condition at the wall, find an expression for the velocity component v(x, y) for y ??. (b) Then mid the maximum value of v at the station x = 1 m, for the particular case of airflow, when U = 3 m/s and δ = 1.1 cm.

Chapter 4, Problem 4.17P, An excellent approximation for the two-dimensional incompressible laminar boundary layer on the flat

Blurred answer
Students have asked these similar questions
An excellent approximation for the two-dimensional incompressible laminar boundary layer on the flat surface in Fig. P4.17 is for y s8 where 8 = Cx2, C = const (a) Assuming a no-slip condition at the wall, find an expression for the velocity component v(x, y) for ys 8. (b) Then find the maximum value of vat the station x = 1 m, for the particular case of airflow, when U = 3 m/s and &= 1.1 cm. Layer thickness 5(x) U= constant и (х, у) u(x, y)
A viscous liquid of constant ρ and μ falls due to gravitybetween two plates a distance 2 h apart, as in Fig. P4.37. Thefl ow is fully developed, with a single velocity component w = w ( x ). There are no applied pressure gradients, onlygravity. Solve the Navier-Stokes equation for the velocityprofi le between the plates.
A velocity field is given by u = 5y2,  v = 3x,   w = 0. (a) Is this flow steady or unsteady? Is it two- or three- dimensional? (b) At (x,y,z) = (3,2,–3), compute the velocity vector. (c) At (x,y,z) = (3,2,–3), compute the local (i.e., unsteady part) of the acceleration vector. (d ) At (x,y,z) = (3,2,–3), compute the convective (or advective) part of the acceleration vector. (e) At (x,y,z) = (3,2,–3), compute the (total) acceleration vector.

Chapter 4 Solutions

Fluid Mechanics

Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - What is the most general form of a purely radial...Ch. 4 - Prob. 4.16PCh. 4 - An excellent approximation for the two-dimensional...Ch. 4 - Prob. 4.18PCh. 4 - A proposed incompressible plane flow in polar...Ch. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - An incompressible flow in polar coordinates is...Ch. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - P4.28 For the velocity distribution of Prob. 4.10,...Ch. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - P4.35 From the Navier-Stokes equations for...Ch. 4 - A constant-thickness film of viscous liquid flows...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Reconsider the angular momentum balance of Fig....Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Consider the following two-dimensional...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - P4.54 An incompressible stream function is...Ch. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - A two-dimensional incompressible flow field is...Ch. 4 - P4.58 Show that the incompressible velocity...Ch. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - An incompressible stream function is given by...Ch. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - A stream function for a plane, irrotational, polar...Ch. 4 - Prob. 4.68PCh. 4 - A steady, two-dimensional flow has the following...Ch. 4 - A CFD model of steady two-dimensional...Ch. 4 - Consider the following two-dimensional function...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Given the following steady axisymmetric stream...Ch. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Oil, of density and viscosity , drains steadily...Ch. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - P4.83 The flow pattern in bearing Lubrication can...Ch. 4 - Consider a viscous film of liquid draining...Ch. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - The viscous oil in Fig. P4.88 is set into steady...Ch. 4 - Oil flows steadily between two fixed plates that...Ch. 4 - Prob. 4.90PCh. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Prob. 4.93PCh. 4 - Prob. 4.94PCh. 4 - Two immiscible liquids of equal thickness h are...Ch. 4 - Prob. 4.96PCh. 4 - Prob. 4.97PCh. 4 - Prob. 4.98PCh. 4 - For the pressure-gradient flow in a circular tube...Ch. 4 - W4.1 The total acceleration of a fluid particle is...Ch. 4 - Is it true that the continuity relation, Eq....Ch. 4 - Prob. 4.3WPCh. 4 - Prob. 4.4WPCh. 4 - W4.5 State the conditions (there are more than...Ch. 4 - Prob. 4.6WPCh. 4 - W4.7 What is the difference between the stream...Ch. 4 - Under what conditions do both the stream function...Ch. 4 - Prob. 4.9WPCh. 4 - Consider an irrotational, incompressible,...Ch. 4 - Prob. 4.1FEEPCh. 4 - Prob. 4.2FEEPCh. 4 - Prob. 4.3FEEPCh. 4 - Given the steady, incompressible velocity...Ch. 4 - Prob. 4.5FEEPCh. 4 - Prob. 4.6FEEPCh. 4 - C4.1 In a certain medical application, water at...Ch. 4 - Prob. 4.2CP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY