Physics Fundamentals
2nd Edition
ISBN: 9780971313453
Author: Vincent P. Coletta
Publisher: PHYSICS CURRICULUM+INSTRUCT.INC.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 38P
To determine
To Find: The tension in the string.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 70.0-kg climber in Fig. 4-72 is supported in the
“chimney" by the friction forces exerted on his shoes and
back. The static coefficients of friction between his shoes
and the wall, and between his
back and the wall, are 0.80 and
0.60, respectively. What is the
minimum normal force he must
exert? Assume the walls are ver-
tical and that the static friction
forces are both at their maximum.
Ignore his grip on the rope.
FIGURE 4–72
Problem 89.
As shown in Fig. 4–70, five balls (masses 2.00, 2.05, 2.10,
2.15, 2.20 kg) hang from a crossbar. Each mass is sup-
ported by "5-lb test" fishing line which will break when
its tension force exceeds 22.2 N (= 5.00 lb). When this
device is placed in an elevator, which accelerates upward,
only the lines attached to the 2.05 and 2.00 kg masses do
not break. Within what range is the elevator's acceleration?
2.20 2.15 2.10 .05 2.00 kg|
FIGURE 4-70
Problem 84.
(a) What minimum force F is needed
to lift the piano (mass M) using the
pulley apparatus shown in Fig. 4–66?
(b) Determine the tension in each
section of rope: Fr1, Fr2, Fr3, and Fr4.
Assume pulleys are massless and
frictionless, and that ropes are massless.
FT3
F72
FTI
FT4
F
FIGURE 4-66
Problem 76.
स
Chapter 4 Solutions
Physics Fundamentals
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A box weighing 66.0 N rests on a table. A rope tied to the box runs vertically upward over a pulley and a weight is hung from the other end (Fig. 4-37). Determine the force that the table exerts on the box if the weight hanging on the other side of the pulley weighs (a) 30.0 N, (b) 60.0 N, and (c) 90.0 N.arrow_forwardA stone hangs by a fine thread from the ceiling, and a section of the same thread dangles from the bottom of the stone (Fig. 4–36). If a person gives a sharp pull on the dangling thread, where is the thread likely to break: below the stone or above it? What if the person gives a slow and steady pull? Explain your answers. FIGURE 4-36 Question 9.arrow_forwardBody A in Fig. 6-33 weighs 102 N, and body B weighs 32 N. The coefficients of friction between A and the incline are µs =0.56 and µk =0.25. Angle θ is 40. Let the positive direction of an x-axis be up the incline. In unit-vector notation, what is the acceleration of A if A is initially (a) at rest, (b) moving up the incline, and (c) moving down the incline.arrow_forward
- The block shown in Fig. 4-59 has mass m=7.0 kg and lies on a fixed smooth frictionless plane tilted at an angle (theta)= 22.0 degrees to the horizontal. (a) Determine the acceleration of the block a step it slides down the plane. (b) If the block starts from rest 12.0m up the plane from its base, what will be the block’s speed when it reaches the bottom of the incline?arrow_forwardA 28.0-kg block is connected to an empty 2.00-kg bucket by a cord running over a frictionless pulley (Fig. 4–73). The coefficient of static friction between the table and the block is 0.45 and the coefficient of kinetic friction between the table and the block is 0.32. Sand is gradually added to the bucket until the system just begins to move. (a) Calculate the mass of sand added to the bucket. (b) Calculate the acceleration of the system. Ignore mass of cord. 28.0 kg FIGURE 4–73 Problem 90.arrow_forwardA bear sling, Fig. 4–40, is used in some national parks for placing backpackers' food out of the reach of bears. As the backpacker raises the pack by pulling down on the rope, the force F needed: (a) decreases as the pack rises until the rope is straight across. (b) doesn't change. (c) increases until the rope is straight. (d) increases but the rope always sags where the pack hangs. F FIGURE 4–40 MisConceptual Question 4.arrow_forward
- (III) (a) Suppose the coefficient of kinetic friction between ma and the plane in Fig. 4-62 is µk = 0.15, and that mA = mB = 2.7 kg. As mB moves down, determine the magnitude of the acceleration of ma and mg, given 0 = 34°. (b) What smallest value of pk will keep the system from accelerating? [Ignore masses of the (frictionless) pulley and the cord.] mB FIGURE 4-62 Problem 67.arrow_forwardTwo blocks made of different materials, connected by a thin cord, slide down a plane ramp inclined at an angle 0 to the horizontal, Fig. 4–76 (block B is above block A). The masses of the blocks are ma and mB, and the coefficients of fric- tion are ua and µr. If ma = mß = 5.0 kg, and HA = 0.20 and uR = 0.30, determine (a) the acceleration of the blocks and (b) the tension in the cord, for an angle 0 = 32°. MB FIGURE 4–76 Problem 94.arrow_forward27 Go Body A in Fig. 6-33 weighs 102 N, and body B weighs 32 N. The coefficients of friction between A and the incline are 0.56 and P = 0.25. Angle 0 is 40°. Let the positive direction of an x axis be up, the incline. In unit-vector notation. what is the acceleration of A if A is initially (a) at rest. (b) moving up the incline, and (c) moving down the incline? 0 Frictionless, massle pulley Figure 6-33 Problems 27 and 28.arrow_forward
- 12. The box of donuts in Fig. 5-32 has a weight component of 5 N along the frictionless ramp. The force on the box from the cord has magnitude T. When the box is (a) stationary, (b) moving up the ramp at constant speed, (c) moving down the ramp at constant speed, (d) moving up the ramp at decreasing speed, and (e) moving down the ramp at decreasing speed, is T equal to, greater than, or less than 5 N? FRESH DONUTSarrow_forwardMatt, in the foreground of Fig. 4–39, is able to move thelarge truck because(a) he is stronger than the truck.(b) he is heavier in some respects than the truck.(c) he exerts a greater force on the truck than the truckexerts back on him.(d) the ground exerts a greater friction force on Matt thanit does on the truck.(e) the truck offers no resistance because its brakes are offarrow_forwardThe normal force on an extreme skier descending a very steep slope (Fig. 4–42) can be zero if(a) his speed is great enough.(b) he leaves the slope (no longer touches the snow).(c) the slope is greater than 75°.(d) the slope is vertical (90°).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY