The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 2SP
To determine
Order Jupiter, Mercury, Earth, Venus, Mars, Saturn, the stars in the increasing order of distance from Earth according to helio centric model.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sort the characteristics according to whether they are part of the a cocentric model, the heliocentric
madel, or both solar system models
This model is Sun-centered.
Retrograde motion is explained by the
orbital speeds of planets.
Epicycles and deferents help explain
planetary motion.
This model is Earth-centered.
The brightness of a planet increases
when the planet is closest to Earth.
Planets move in circular orbits and
with uniform motion.
Retrograde motion is explained by
epicycles.
Geocentric
Heliocentric
Both geocentric and heliocentric
Directions: Complete the given table by finding the ratio of the planet’s time of the revolution to its radius.
Planet
Average
Radius of
Orbit
Times of
Revolution
R3
T2
T2 /R3
Mercury
5.7869 × 1010
7.605 ×106
Venus
1.081 × 1011
1.941 ×107
Earth
1.496 × 1011
3.156 ×107
What pattern do you observe in the last column of data? Which law of Kepler's does this seem to support?
A planet revolves around a certain star. At one point in the planet's orbit, called periapsis, it passes much closer to the star. Which of the following statements about periapsis is true?
The planet's orbital period becomes shorter after every periapsis.
The planet's orbital period becomes longer after every periapsis.
The planet orbits with a slower speed during periapsis.
The planet orbits with a greater speed during periapsis.
Chapter 4 Solutions
The Solar System
Ch. 4 - Prob. 1RQCh. 4 - Why did early human cultures observe astronomical...Ch. 4 - Prob. 3RQCh. 4 - Name one example each of a famous politician,...Ch. 4 - Why did Plato propose that all heavenly motion was...Ch. 4 -
On what did Plato base his knowledge? Was it...Ch. 4 - Which two-dimensional (2D) and three-dimensional...Ch. 4 - Prob. 8RQCh. 4 - In Ptolemys model, how do the epicycles of Mercury...Ch. 4 - Describe in detail the motions of the planets...
Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 -
When Tycho observed the new star of 1572, he...Ch. 4 - Assume the night is clear and the Moons phase is...Ch. 4 - Does Tychos model of the Universe explain the...Ch. 4 - Name an empirical law. Why is it considered...Ch. 4 -
How does Kepler’s first law of planetary motion...Ch. 4 - Prob. 19RQCh. 4 - Prob. 20RQCh. 4 - Prob. 21RQCh. 4 - Prob. 22RQCh. 4 - Prob. 23RQCh. 4 - Prob. 24RQCh. 4 - Prob. 25RQCh. 4 - Prob. 26RQCh. 4 - Prob. 27RQCh. 4 - Prob. 1PCh. 4 -
If you lived on Mars, which planets would exhibit...Ch. 4 - Prob. 3PCh. 4 - If a planet has an average distance from the Sun...Ch. 4 - If a space probe is sent into an orbit around the...Ch. 4 - Prob. 6PCh. 4 - An object takes 29.5 years to orbit the Sun. What...Ch. 4 -
One planet is three times farther from the Sun...Ch. 4 - Galileos telescope showed him that Venus has a...Ch. 4 - Which is the phase of Venus when it is closest?...Ch. 4 - Prob. 11PCh. 4 - Prob. 1SPCh. 4 - Prob. 2SPCh. 4 - Prob. 1LLCh. 4 - Prob. 2LLCh. 4 - What three astronomical objects are represented...Ch. 4 - Use the figure below to explain how the Ptolemaic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Arrange the following in order of increasing distance from Earth according to the geocentric model of the Universe: Jupiter, Mercury, the Sun, Venus, Mars, Saturn, the starsarrow_forwardThe day on Mars is 1.026 Earth-days long. The martian year lasts 686.98 Earth-days. The two moons of Mars take 0.32 Earth-day (for Phobos) and 1.26 Earth-days (for Deimos) to circle the planet. You are given the task of coming up with a martian calendar for a new Mars colony. Would a solar or lunar calendar be better for tracking the seasons?arrow_forwardExplain the geocentric view of the universe.arrow_forward
- The planet Saturn has a mass of 5.68×10^26 kg and a radius of 58,200 km. Janus, a moon of Saturn, has a mass of 1.9×10^18 kg and it orbits Saturn a distance of 151,400 km from the center of Saturn. - How many hours does it take for Janus to orbit Saturn?arrow_forwardThe radius of the Earth's orbit is 1.50 1011 m and that of Mars is 2.28 1011 m. The star that this planet orbits is identical to our Sun. What is the orbital period of this planet?In years?arrow_forwardThe picture below shows the model. Planets Moon Earth SUN Perihelion Heliocentric Aphelion Geocentric Solarcentricarrow_forward
- Two planets orbit the same star in circular orbits. One orbits at a distance of 167AU and takes 1.5days to complete an orbit. The second planet orbits at a distance of 4.7 AU. How long does it take the the second planet to complete one orbit? answer in days.arrow_forwardselect the most accurate statementarrow_forwardSuppose, we recently discovered a new planet named Concordia. If for 15 degrees difference, the distance between Cansae City and and Cantabrigia City would have been 6050 stadia. According to Erasthosthenes' calculation, what would have been the circumference of Concordia? 5.45E5 stadia 2.45E5 stadia 4.45E5 stadia 1.45E5 stadia 3.45E5 stadiaarrow_forward
- The planet Earth has a semi-major axis of a = 1.00 AU and an orbital period of P= 1 sidereal year = 365.25 days = 3.156 x 10^7 s. Compute the orbital periods of bodies orbiting the Sun with each of the following semi-major axes. a) a = 0.1 AU b) a = 10 AU c) a = 100 AU d) a = 1000 AU e) a = 10,000 AU 1 AU = 1.496 x 10^8 km = 1.496 x 10^11 m = 1.496 x 10^13 cm. GM(sun) = 1.327 x 10^20 m^3/s^2 = (Newton's Constant) x (Mass of Sun) %3D %3Darrow_forwardEarth has an orbital period of 365 days and its mean distance from the sun is 1.495×108 km. The planet pluto's mean distance from the sun is 5.896×109 km. Using kepler's third law, calculate pluto's orbital period in earth days.arrow_forward(to two decimal places): (what is ‘h’?) Eccentricity of earth orbit is 0.0167 µ(sun) = 1.32712E+11 km^3/s^ semimajor axis of Earth orbit = 1.49598E+08 need to figure out what ‘h’ is. a) Calculate the speed of the earth around the sun at aphelion? (29.29 KM/S) b) At perihelion? (30.29 KM/S)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY