Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 24P
(a)
To determine
The wavelength of the emitted photon.
(b)
To determine
The momentum and kinetic energy of the recoil atom. The source of the energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The hydrogen atom was initially at the state where n=3 and l=2. It then decays to a lower state releasing a photon. What are the possible photon energies(in [eV]) that may be observed?
An electron with kinetic energy of 12.50 eV hits a hydrogen atom in its ground state.
(a)Sketch the hydrogen energy level diagram, showing the transition to all possible excited state.
(b) Find all the possible kinetic energies of the outgoing electron.
(c) In the same sketch as part (a), draw all possible transitions when the atom relaxes and emits a photon.
(d) Find the wavelengths of all the possible emission photons.
A photon is absorbed by a hydrogen atom in the ground state. If the electron is boosted from to the n = 6, what was the energy of the absorbed photon? Give your answer in electron volts (eV).
Chapter 4 Solutions
Modern Physics
Ch. 4.2 - Exercise 1 Find the horizontal speed vx for this...Ch. 4.2 - Prob. 2ECh. 4.3 - Prob. 3ECh. 4.3 - Prob. 4ECh. 4.3 - Prob. 5ECh. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5Q
Ch. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - A mystery particle enters the region between the...Ch. 4 - Prob. 4PCh. 4 - A Thomson-type experiment with relativistic...Ch. 4 - Prob. 6PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the maximum kinetic energy of an electron such that a collision between the electron and a stationary hydrogen atom in its ground state is definitely elastic?arrow_forwardWhen a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardWhat is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forward
- Why are X-rays emitted only for electron transitions to inner shells? What type of photon is emitted for transitions between outer shells?arrow_forwardAn electron of a hydrogen atom initially in the third excited state emits a photon and ends up in the ground state. (i) What is the energy in eV and in Joules of the emitted photon? (ii) What is the frequency of the emitted photon?arrow_forwardA hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n = 3. What is the energy of the absorbed photon?arrow_forward
- An electron is trapped in a one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon? wavelength: .0306 Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions to the ground state. wavelength of least energetic photon: wavelength of most energetic photon: .0753 Incorrect .0709 m Incorrect m Earrow_forwardLet's see what wavelength of photons can be produced by the impact of a high-energy electron with a target. We will assume that the entire kinetic energy of the electron is transferred to the photon and that the electron is accelerated by a potential difference of 10.0 kV. If such an electron produces a photon on impact, what is the minimum wavelength of the photon?arrow_forwardCan the electron in the ground state of hydrogen absorb a photon of energy less than 13.6 eV? Can it absorb a photon of energy greater than 13.6 eV? Explain.arrow_forward
- A) What is the approximate wavelength emitted from helium represented by the bright yellow emission line below? What is it's frequency in HZ and energy in eV? (1 eV= 1.6 x 10-19 joules). B) If the excited helium electron that emits a yellow photon in this line starts with a potential energy of 8 eV, what is the potential energy of the electron afterwards? Assume that the emission of a yellow photon is allowed by the laws of quantum mechanics. Also don't worry about the other electron.arrow_forwardAn atom in an excited state 1.95 eV above the ground state remains in that excited state 1.15 us before moving to the ground state. (a) Find the frequency of the emitted photon. THz (b) Find the wavelength of the emitted photon. nm (c) Find the approximate uncertainty in energy of the photon. ΔΕΣ peVarrow_forwardProtons are accelerated from rest by a potential difference of 3.80 kVkV and strike a metal target. A) If a proton produces one photon on impact, what is the minimum wavelength of the resulting xx rays? Express your answer in meters. B) Find the minimum wavelength if 3.80 −keV−keV electrons are used instead? Express your answer in meters.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning