The Essential Cosmic Perspective (8th Edition)
8th Edition
ISBN: 9780134446431
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 20EAP
Decide whether the statement makes sense (or is clearly true) or does not make sense (or is clearly false). Explain clearly: not all of these have definitive answers, so your explanation is more important than your chosen answer.
20. The fact that the Moon rotates once in precisely the time it takes to orbit Earth once is such an astonishing coincidence that scientists probably never will be able to explain it.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I hope you answer this:)
1. Ancient civilizations observed and kept track of daily movement of heavenly bodies. Which one is NOT the reason for this?
a. navigation purposes
b. time keeping
c. annual cultural cycles
d. agricultural cycles
2. What Kepler's Law of Planetary Motion is related to the Newton's Law of Motion based from the statement below:
The statement:
"Since the planets move on ellipses they are continually accelerating."
a. Law of Ellipses and Law of Acceleration
b. Law of Ellipses and Law of Inertia
c. Law of Equal Areas and Law of Interaction
d. Law of Period and Law of Inertia
e. Law of Period and Law of Acceleration
3. Edwi Hubble proposed a way to organize galaxies in 1920. How are galaxies classified?
a. color of stars
b. shape of galaxy
c. age of stars
d. composition of stars
e. diameter of galaxy
4. Find the magnifying power (M) and the length (L) of a simple telescope with 30-inches focal length of the objective and 2 inches focal length of the eyepiece.…
Question 1 (Total: 30 points)
a. What is a repeat ground-track orbit?
b. Explain why repeat ground-track and Sun-synchronous orbits are typically used for Earth observation missions.
c. The constraint for a Sun-synchronous and repeat ground-track orbit is given by T = 286, 400, where I is the orbital period in seconds, m the number of days and k
the number of revolutions. Explain why this is, in fact, a constraint on the semi-major axis of the orbit.
Please answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you!
1)
Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit.
1.8
2.8
3.4
4.2
A)
The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars?
9.8 m/s2
2.0 m/s2
3.9 m/s2
4.9 m/s2
none of these
B)
A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period?
1.1 x 10 4 s
4.1 x 10 4 s
5.7 x 10 4 s
1.5 x 10 5 s
Chapter 4 Solutions
The Essential Cosmic Perspective (8th Edition)
Ch. 4 - Prob. 1VSCCh. 4 - Check your understanding of some of the many types...Ch. 4 - Check your understanding of some of the many types...Ch. 4 - Check your understanding of some of the many types...Ch. 4 - Check your understanding of some of the many types...Ch. 4 - Define speed, velocity, and acceleration. What are...Ch. 4 - Define momentum and force. What do we mean when we...Ch. 4 - What is free-fall, and why does it make you...Ch. 4 - Prob. 4EAPCh. 4 - Prob. 5EAP
Ch. 4 - Define kinetic energy, radiative energy, and...Ch. 4 - Define and distinguish temperature and thermal...Ch. 4 - Prob. 8EAPCh. 4 - Summarize the universal law of gravitation both in...Ch. 4 - What is the difference between a bound and an...Ch. 4 - Under what conditions can we use Newton’s version...Ch. 4 - Explain why orbits cannot change spontaneously,...Ch. 4 - Explain how the Moon creates tides on Earth. Why...Ch. 4 - How do the tides vary with the phase of the Moon?...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - A car is accelerating when it is (a) traveling on...Ch. 4 - Compared to their values on Earth, on another...Ch. 4 - Which person is weightless? (a) a child in the air...Ch. 4 - Consider the statement “There’s no gravity in...Ch. 4 - To make a rocket turn left, you need to (a) fire...Ch. 4 - Compared to its angular momentum when it is...Ch. 4 - Prob. 31EAPCh. 4 - If Earth were twice as far from the Sun, the force...Ch. 4 - According to the law of universal gravitation,...Ch. 4 - If the Moon were closer to Earth, high tides would...Ch. 4 - Testing Gravity. Scientists are constantly trying...Ch. 4 - How Does the Table Know? Thinking deeply about...Ch. 4 - 37. Your Ultimate Energy Source. Roles: Scribe...Ch. 4 - Weightlessness. Astronauts are weightless when in...Ch. 4 - Einstein’s Famous Formula. a. What is the meaning...Ch. 4 - The Gravitational Law. a. How does quadrupling the...Ch. 4 - Prob. 41EAPCh. 4 - Head to Foot Tides. You and Earth attract each...Ch. 4 - Prob. 43EAPCh. 4 - Prob. 44EAPCh. 4 - Prob. 45EAPCh. 4 - Prob. 46EAPCh. 4 - Prob. 47EAPCh. 4 - Prob. 48EAPCh. 4 - Space Station. Visit a NASA site with pictures...Ch. 4 - Prob. 50EAPCh. 4 - Prob. 51EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- how do you compare us with people from the moon. Explain?arrow_forwardWhich of the following statements could be considered scientific statements ? 1. There is water on the surface of Mars. 2. The universe contains atoms we will never detect. It is wrong to cheat. O A. C. 1 2, and 3 are all scientific B. None of the statements is scientific OC.A. Only 1 is scientific () D. B. 1 and 2 are scientificarrow_forwardPLEASE MAKE SURE THAT YOU ARE ANSWERING THE QUESTIONS USING YOUR OWN THOUGHTS. STRICTLY NO COPY PASTE PLEASE! Answer each questions in not less than 2 paragraphs: 3. What is astronomy? 4. What is Geocentric Model?arrow_forward
- The international space station (ISS) orbits 400 km above Earth's surface at 7.66 km/s (17,100 mph). Suppose the ISS is moved to 400 km above Mars. 1. To maintain its orbit above Mars, will the ISS have to move faster or slower that its orbital speed around Earth? Justify your answer. 2. Will astronauts on the ISS feel lighter, heavier, or no change at all while in orbit around Mars. Explain your answer.arrow_forward1, 2, 3arrow_forwardWhat is the answerarrow_forward
- (If relevant) A clearly labeled diagram (or diagrams) clearly pertaining to your analysis with a coordinate system and relevant labels. Final answer with appropriate units and significant figures. A 2-3 sentence reflection on your answer. Does it make sense? Why or why not? What are some implications? Do not just summarize your solution procedure.arrow_forwardMilestone A: Walk 3.2 km (~2 miles) towards northeast. Milestone B: Walk 1.3 km towards southeast. Milestone C: Walk 2.4 km directly south. Surprise at the end! You have arrived at the treasure! Distance: What is the total distance traveled if you walk the distance A, B, C? Give your answer in km and miles. 2. Direction: a. what is meant by “north east?” b. what direction would this be on a cartesian coordinate system? c. What is meant by “south east?” d. What direction would this be on a cartesian coordinate system? e. What about “south”? f. What direction on cartesian coordinate system? 3. Draw the diagram: include drawing the resultant a. What does the resultant vector represent? 4. Calculate: use trigonometry to find the displacement.arrow_forwardThe moons Prometheus and Pandora orbit Saturn at 139,350 and 141,700 kilometers, respectively. a. Using Newton's version of Kepler's third law, find the orbital periods of the two moons. b. Find the percent difference in their.distances and in their orbital periods. c. Consider the two in a race around Saturn: In one Prometheus orbit, how far behind is Pandora (in units of time)? In how many Prometheus orbits will Pandora have fallen behind by one of its own orbital periods? Convert this number of periods back into units of time. This is how often the satellites pass by each other.arrow_forward
- In the figure below, Planet X is moving in a perfectly circular orbit around its companion star.The time between each position shown is exactly one month: 1. Write down Kepler’s second Law of planetary motion.2. Does the planet obey Kepler’s second law? How do you know?3. If you carefully watched this planet during the entire orbit, would its speed be increasing, decreasing, orstaying the same? How do you know?arrow_forwardGive me the right answer please and thank you, take your timeCalculate the amount of time it takes for light reflected off the surface of a distant planet to reach us.1. Sunlight takes about 8.3 minutes to travel from the Sun to Earth. What is the Sun-Earth distance in AU? (Give your answer rounded to the nearest AU).2.Light is reflected off the surface of a planet 5.2 AU away from us. How long does it take this light to reach us from the planet? Give your answer in minutes, rounded to exactly one decimal place.arrow_forwardbetween a planet and its moon. Procedure/Analysis: Go to: https://www.physicsclassroom.com/Physics-Interactives/Circular-and-Satellite- Motion/Gravitational-Fields/Gravitational-Fields-Interactive Use the program to answer the following questions. 1. A planet and its moon are shown in the simulation window. Click and drag the moon to various positions about the planet and observe the gravitational force vector. In the diagram below, draw a force vector (arrow with arrowhead) to depict the direction and relative magnitude of the force acting upon the moon at the designated locations. Note: the size of the arrow should be representative of the strength of the force.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY