The given figure shows how the Moon causes tides on Earth. Note that the North Pole is in the center of the diagram, so the numbers 1 through 4 label points along Earth’s equator.
What do the three black arrows represent?
A. The tidal force Earth exerts on the Moon.
B. The Moon’s gravitational force at different points on Earth.
C. The direction in which Earth’s water is flowing
D. Earth’s orbital motion
Answer to Problem 1VSC
Solution:
The attraction is Minimum at point 3 which feels least gravitational attraction. Hence option (B) is correct. Since in figure gravitational pull of the Moon on Earth which gives rise to tides and the North Pole is at the center in this diagram and the numbered points are along the circumference of the equator. The black arrows represent the gravitational pull of the Moon on the Earth. The length of arrows denotes the strength of attraction. The arrow is longest at point 1, which is closest to the moon denoting that the attraction is Maximum there.
Explanation of Solution
Introduction:
Visual information used in astronomy shows how the Moon causes tides on Earth. Here in diagram North Pole is in the center of the diagram, so the numbers 1 through 4 label points along Earth’s equator.
In the figure, Tides are created by the difference in the force of attraction between the Moon and different parts of Earth. The two daily high tides occur as a location on Earth rotates through the two tidal bulges. (The diagram greatly exaggerates the tidal bulges, which raise the oceans only about 2 meters and the land only about a centimeter.)
The figure shown above shows the gravitational pull of the Moon on Earth which is responsible for giving rise to tides. At the center in this diagram the North Pole is found and along the circumference of the equator, the numbered points are there. The gravitational pull of the Moon on the Earth is represented by the black arrows. The strength of attraction is denoted by the length of arrows. The arrow is longest at point 1 and that is closest to the moon clearly denoting that the attraction is shown Maximum there. The attraction is Minimum at point 3 and thus feels least gravitational attraction. Hence option (B) is correct. The force exerted by the Moon on Earth denoted by the black arrows. Tidal force can be defined as the “stretching force which acts on a body due to the difference in gravitational attraction on its two opposite ends. Therefore, option (a) is clearly not correct.
The arrows are not denoting the direction flow of water. Hence, option (C) mentioned is also not correct. The black arrows are pointing in the direction of the moon. The orbital motion of Earth is also clearly not towards the Moon. Hence, option (D) is not correct.
Conclusion:
The gravitational pull of the Moon on Earth which gives rise to tides. The black arrows representing the gravitational pull of the Moon on the Earth and length of arrows denotes the strength of attraction. Tidal force is defined as the stretching force that acts on a body due to the difference in gravitational attraction on its two opposite ends.
Want to see more full solutions like this?
Chapter 4 Solutions
The Cosmic Perspective
- I need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardA bird dives to catch a fish at 5.00 m/s. Biologists say this bird makes a noise at 115.000 Hz. Field biologists are on a stationary boat as the bird approaches them, and they measure the frequency of the bird's sound to be 116.668 Hz. What is the air temperature that day, in degrees Fahrenheit? Express your answer to 3 sig figs. Note: This calculation is very sensitive to rounding. Keep to at least 4 places after the decimal point during your calculations.arrow_forwardA eats of Softe Four adult polar bears, each of mass 440. kg, are adrift on an ice floe in the seawaters of the Arctic Ocean. The ice floe is a rectangular slab, 8.0 m long by 4.0 m wide. If the top of the ice floe is 2.00 m above the water line, how thick is the slab of ice? Express your answer to 3 sig figs in either centimeters or meters.arrow_forward
- I need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forward
- No chathptarrow_forwardGiven a heterostructure interface (e.g. two n-type semiconductors), show how the energyband structure changes near the interface once they are attached and equilibrium isobtained. Why does this happen in terms of electron motion, “built-in” potential, maintainingband gap energy and electron affinity?arrow_forwardWhat is Fermi energy? Fermi Temperature? How to calculate the number density ofelectrons in a metal given the density of states?arrow_forward
- How do MOSFETS work? Explain the operating principle (the fundamental physics) for asingle-electron transistor, including the criteria for making sure it works properly.arrow_forwardWhat is meant by “effective mass”? How does it relate to the electron band diagrams?arrow_forwarddn A material has a dispersion coefficient of dλ = -17.7 × 10-5 nm-¹, with no = 1.500 when 20 = 543.0 nm. A beam incident on the material contains wavelengths between ₁ = 425.0 nm and ₂ = 649.0 nm, and the beam's angle of incidence i is 45.45°. Use 1.000 for the index of refraction of air. Letting denote the refraction angle, what is the absolute value of the angular separation A0 of the refracted beams produced by this material? A0 =arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON