Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 198SE
To determine
Prove that for every constant k,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following statements are true
1. That the expected value operator E(X) is positive means that E(X)2 0 for all X
2. The expected value operator fulfills E(aX+bY+c)=aE(X)+bE(Y)+c
3. The conditional expected value E(X|Y) is the function h(X) of X that minimize the
expected absolute error E(|h(X)-Y|)
4. If X and Y are independent variables so applies to the moment generating function for
the sum X+Y that ox+y(s) = ¢x(s)· Þy(s)
Which statements are true?
Select one or more:
a. Markov’s inequality is only useful if I am interested in that X is larger than its expectation.
b. Chebyshev’s inequality gives better bounds than Markov’s inequality.
c. Markov’s inequality is easier to use.
d. One can prove Chebyshev’s inequality using Markov’s inequality with (X−E(X))2.
Let X and Y be two discrete random variables and f(X) and f(Y) be some functions of
X and Y respectively. Derive the most general inequality relationship between I(X;Y)
and I(f(X); g(Y)).
Chapter 4 Solutions
Mathematical Statistics with Applications
Ch. 4.2 - Prob. 1ECh. 4.2 - A box contains five keys, only one of which will...Ch. 4.2 - A Bernoulli random variable is one that assumes...Ch. 4.2 - Let Y be a binomial random variable with n = 1 and...Ch. 4.2 - Suppose that Y is a random variable that takes on...Ch. 4.2 - Consider a random variable with a geometric...Ch. 4.2 - Let Y be a binomial random variable with n=10 and...Ch. 4.2 - Prob. 8ECh. 4.2 - A random variable Y has the following distribution...Ch. 4.2 - Refer to the density function given in Exercise...
Ch. 4.2 - Suppose that Y possesses the density function...Ch. 4.2 - Prob. 12ECh. 4.2 - A supplier of kerosene has a 150-gallon tank that...Ch. 4.2 - A gas station operates two pumps, each of which...Ch. 4.2 - As a measure of intelligence, mice are timed when...Ch. 4.2 - Let Y possess a density function...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - If, as in Exercise 4.17, Y has density function...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - If Y is a continuous random variable with density...Ch. 4.3 - Prob. 25ECh. 4.3 - If Y is a continuous random variable with mean ...Ch. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - The proportion of time Y that an industrial robot...Ch. 4.3 - Prob. 31ECh. 4.3 - Weekly CPU time used by an accounting firm has...Ch. 4.3 - The pH of water samples from a specific lake is a...Ch. 4.3 - Prob. 34ECh. 4.3 - If Y is a continuous random variable such that...Ch. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.4 - Suppose that Y has a uniform distribution over the...Ch. 4.4 - If a parachutist lands at a random point on a line...Ch. 4.4 - Suppose that three parachutists operate...Ch. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - A circle of radius r has area A = r2. If a random...Ch. 4.4 - Prob. 44ECh. 4.4 - Upon studying low bids for shipping contracts, a...Ch. 4.4 - 4.45 Upon studying low bids for shipping...Ch. 4.4 - The failure of a circuit board interrupts work...Ch. 4.4 - If a point is randomly located in an interval (a,...Ch. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - The cycle time for trucks hauling concrete to a...Ch. 4.4 - Refer to Exercise 4.51. Find the mean and variance...Ch. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Refer to Exercise 4.54. Suppose that measurement...Ch. 4.4 - Refer to Example 4.7. Find the conditional...Ch. 4.4 - Prob. 57ECh. 4.5 - Use Table 4, Appendix 3, to find the following...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - What is the median of a normally distributed...Ch. 4.5 - If Z is a standard normal random variable, what is...Ch. 4.5 - A company that manufactures and bottles apple...Ch. 4.5 - The weekly amount of money spent on maintenance...Ch. 4.5 - In Exercise 4.64, how much should be budgeted for...Ch. 4.5 - A machining operation produces bearings with...Ch. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Refer to Exercise 4.68. If students possessing a...Ch. 4.5 - Refer to Exercise 4.68. Suppose that three...Ch. 4.5 - Wires manufactured for use in a computer system...Ch. 4.5 - Prob. 72ECh. 4.5 - The width of bolts of fabric is normally...Ch. 4.5 - A soft-drink machine can be regulated so that it...Ch. 4.5 - The machine described in Exercise 4.75 has...Ch. 4.5 - The SAT and ACT college entrance exams are taken...Ch. 4.5 - Show that the maximum value of the normal density...Ch. 4.5 - Show that the normal density with parameters and ...Ch. 4.5 - Assume that Y is normally distributed with mean ...Ch. 4.6 - a If 0, () is defined by ()=0y1eydy, show that...Ch. 4.6 - Use the results obtained in Exercise 4.81 to prove...Ch. 4.6 - The magnitude of earthquakes recorded in a region...Ch. 4.6 - If Y has an exponential distribution and P(Y 2) =...Ch. 4.6 - Refer to Exercise 4.88. Of the next ten...Ch. 4.6 - The operator of a pumping station has observed...Ch. 4.6 - The length of time Y necessary to complete a key...Ch. 4.6 - Historical evidence indicates that times between...Ch. 4.6 - One-hour carbon monoxide concentrations in air...Ch. 4.6 - Prob. 95ECh. 4.6 - Prob. 96ECh. 4.6 - Prob. 97ECh. 4.6 - Consider the plant of Exercise 4.97. How much of...Ch. 4.6 - If 0 and is a positive integer, the...Ch. 4.6 - Prob. 100ECh. 4.6 - Applet Exercise Refer to Exercise 4.88. Suppose...Ch. 4.6 - Prob. 102ECh. 4.6 - Explosive devices used in mining operations...Ch. 4.6 - The lifetime (in hours) Y of an electronic...Ch. 4.6 - Four-week summer rainfall totals in a section of...Ch. 4.6 - The response times on an online computer terminal...Ch. 4.6 - Refer to Exercise 4.106. a. Use Tchebysheffs...Ch. 4.6 - The weekly amount of downtime Y (in hours) for an...Ch. 4.6 - If Y has a probability density function given by...Ch. 4.6 - Suppose that Y has a gamma distribution with...Ch. 4.6 - Prob. 112ECh. 4.7 - Prob. 120ECh. 4.7 - Prob. 122ECh. 4.7 - The relative humidity Y, when measured at a...Ch. 4.7 - The percentage of impurities per batch in a...Ch. 4.7 - Prob. 125ECh. 4.7 - Suppose that a random variable Y has a probability...Ch. 4.7 - Verify that if Y has a beta distribution with = ...Ch. 4.7 - Prob. 128ECh. 4.7 - During an eight-hour shift, the proportion of time...Ch. 4.7 - Prob. 130ECh. 4.7 - Errors in measuring the time of arrival of a wave...Ch. 4.7 - Prob. 132ECh. 4.7 - Prob. 133ECh. 4.7 - Prob. 134ECh. 4.7 - Prob. 135ECh. 4.9 - Suppose that the waiting time for the first...Ch. 4.9 - Prob. 137ECh. 4.9 - Example 4.16 derives the moment-generating...Ch. 4.9 - The moment-generating function of a normally...Ch. 4.9 - Identify the distributions of the random variables...Ch. 4.9 - If 1 2, derive the moment-generating function of...Ch. 4.9 - Refer to Exercises 4.141 and 4.137. Suppose that Y...Ch. 4.9 - The moment-generating function for the gamma...Ch. 4.9 - Consider a random variable Y with density function...Ch. 4.9 - A random variable Y has the density function...Ch. 4.10 - A manufacturer of tires wants to advertise a...Ch. 4.10 - A machine used to fill cereal boxes dispenses, on...Ch. 4.10 - Find P(|Y | 2) for Exercise 4.16. Compare with...Ch. 4.10 - Find P(|Y | 2) for the uniform random variable....Ch. 4.10 - Prob. 150ECh. 4.10 - Prob. 151ECh. 4.10 - Refer to Exercise 4.109. Find an interval that...Ch. 4.10 - Refer to Exercise 4.129. Find an interval for...Ch. 4.11 - A builder of houses needs to order some supplies...Ch. 4.11 - Prob. 157ECh. 4.11 - Consider the nail-firing device of Example 4.15....Ch. 4.11 - Prob. 159ECh. 4 - Prob. 160SECh. 4 - Prob. 161SECh. 4 - Prob. 162SECh. 4 - Prob. 163SECh. 4 - The length of life of oil-drilling bits depends...Ch. 4 - Prob. 165SECh. 4 - Prob. 166SECh. 4 - Prob. 167SECh. 4 - Prob. 168SECh. 4 - An argument similar to that of Exercise 4.168 can...Ch. 4 - Prob. 170SECh. 4 - Suppose that customers arrive at a checkout...Ch. 4 - Prob. 172SECh. 4 - Prob. 173SECh. 4 - Prob. 174SECh. 4 - Prob. 175SECh. 4 - If Y has an exponential distribution with mean ,...Ch. 4 - Prob. 180SECh. 4 - Prob. 181SECh. 4 - Prob. 182SECh. 4 - Prob. 183SECh. 4 - Prob. 184SECh. 4 - Prob. 185SECh. 4 - Prob. 186SECh. 4 - Refer to Exercise 4.186. Resistors used in the...Ch. 4 - Prob. 188SECh. 4 - Prob. 189SECh. 4 - Prob. 190SECh. 4 - Prob. 191SECh. 4 - The velocities of gas particles can be modeled by...Ch. 4 - Because P(YyYc)=F(y)F(c)1F(c) has the properties...Ch. 4 - Prob. 194SECh. 4 - Prob. 195SECh. 4 - Prob. 196SECh. 4 - Prob. 197SECh. 4 - Prob. 198SECh. 4 - Prob. 199SECh. 4 - Prob. 200SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Which statements are true? Select one or more: a. Markov's inequality is only useful if I am interested in that X is larger than its expectation. b. Chebyshev's inequality gives better bounds than Markov's inequality. c. Markov's inequality is easier to use. d. One can prove Chebyshev's inequality using Markov's inequality with (X-E(X))-.arrow_forwardMarkov’s inequality states that Select one: a. P(|X|≥t)≤E(X)/t for all random variables X and all t≥0. b. P(|X|≤t)≤E(X)/t for all random variables X and all t≥0. c. P(X≥t)≤E(X)/t for all non-negative random variables X and all t≥0. d. P(X≤t)≤E(X)/t for all non-negative random variables X and all t≥0.arrow_forward2. Problem. Let X be a random variable such that E(X)= 0. Assuming that the variance of X exists, show that Hint: Note that P(X ≥a) ≤ var (X) var (X) + a² for all a > 0. P(X≥a) ≤ P ((X+t)² ≥ (a+t)²) Apply the Markov inequality and optimize on t. for all t20.arrow_forward
- Help!arrow_forwardLet X and Y be independent uniform random variables on (0,1). Let Z = [1/(X+Y)]. (Recall that is the largest integer ≤ x.) (a) Find P(Z = 0). (b) Find E[Z].arrow_forwardLet X(t) be a WSS random process. Show that for any a > 0, we have P{|X(t +T) - X(t)| > a} 2Rx (0) - 2Rx (T) a²arrow_forward
- Let X be a strictly positive r.v. with the following moment generating function:MX (t) = 1/(1 − 2t)^3(a) Use Markov’s inequality to find an upper bound for P (|X| ≥ 18).(b) Use Chebyshev’s inequality to find an upper bound for P (|X − 6| ≥ 12).(c) Find the lowest possible upper bound for P (X ≥ 18) you could get fromChernoff’s inequality.arrow_forwardWe say that a mean-zero random variable X is sub-Gaussian with parameter o² if the m.g.f. of X satisfies, for all t ER, Mx(t) ≤e ²0¹2 Let X be a sub-Gaussian random variable with parameter o². Using Markov's inequality, show that, for all a > 0, P(X ≥ a) ≤ e¯20² (Hint: the method of proof of the one-sided Chebyshev inequality may provide some in- spiration.)arrow_forwardP2: Consider a M/M/1 queue with arrival rate 1 and service rate u. Suppose the queue currently has some packets and the server is working on transmitting one of them. What is the probability that a new packet arrives before the server finishes transmitting the packet that it is currently working on? Formally prove your answer.arrow_forward
- This result leads immediately to an important generalization. Consider a function of X and Y in the form g(X)h(Y ) for which an expectation exists. Then, if X and Y are independent: E[g(X)h(Y)]=E[g(X)JE[h(Y)]arrow_forwardQ1 Let X1 and X2 be independent exponential random variables with identical parameter A. Q1(i.) Find the distribution of Z = max(X1, X2). Q1 (ii.) Find the distribution of Y = min(X1, X2). Q1(iii.) Calculate E[Y]. Q1(iv.) Calculate E[Z]. Q1(v.) Using the relation Z = X1+X2 – Y, Calculate E[Z] and verify that it agrees with the calculation done in part (iv.)arrow_forward2 Assume that Pr[A]=0.5, Pr[B]=0.45, and Pr[A′∩B]=0.2. Find the following probabilities: (1) Pr[B′∩A]=Pr[B′∩A]= (2) Pr[A∩B]=Pr[A∩B]= (3) Pr[A′∩B′]=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License