University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.20DQ
To determine
The reason for the appearance of only points instead of full ring when electrons are made to pass through aluminum crystal rather than aluminum foil.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A simple cubic crystal is cut so that the rows of atoms on its surface are separated by a
distance of 0.352 nm. A beam of electrons is accelerated through a potential difference of 175 V
and is incident on the surface. If all diffraction orders are possible, at what angles, relative to the
crystal surface, would the diffracted beams be observed? me = 9.11 x 10-31 kg.
5.
3. Diatomic line. Consider a line of atoms ABAB.....AB, with A-B bond length of a/2.
The form factors are fa and f for atoms A, B, respectively. The incident beam of x-
rays is perpendicular to the line of atoms. (a) Show that the interference condition is
nλ = a cose, where is the angle between the diffraction beam and the line of
atoms. (b) Show that the intensity of the diffracted beam is proportional to
A
f₁-f² for n odd, and to \ƒÃ +ƒÂ for n even. (c) Explain what happens if
fA=fB.
An electron is in an infinite square well of width 2.0 nm. What is the wavelength of the emitted photon in nanometers as the electron transitions from the n=8 to the n=4 state? (h = 6.626 × 10-34 J ∙ s, mel = 9.11 × 10-31 kg, 1 eV = 1.60 × 10-19J). Please give your answer with no decimal places.
Chapter 39 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Electron diffractometers help us understand the structure of matter. Material is covered in an array of parallel nano-scale metal wires with unknown spacing. A beam of electrons, accelerated through a potential of 20.80 kV produces a pattern of electron impacts on a distant screen with a central bright peak with two smaller peaks. The angular position of the smaller peaks is 25.20 degrees relative to the central peak. What is the spacing of the wires? You may treat the electron as non-relativistic. (Answer in meters)arrow_forwardLight of wavelength 477 nm is incident on the surfaces of several different metals. For which value of the work function will electrons be emitted from the surface? Answer in terms of eVarrow_forwardCalculate the wavelength associated with an electron with energy of 1.0 eV if the electron is inside a GaAs crystal. (The mass of an electron in GaAs is 0.067 X 9.11 X 10-31 Kg)arrow_forward
- S1arrow_forwardFor a hydrogen-like atom (the atom contains only one electron, like singly ionized He, doubly ionized Lithium, etc.), the energy levels are given by En = -Z2(13.6)/n2 eV where Z is the atomic number. If an electron in a doubly ionized Lithium atom jumps from the 2nd excited state to the ground state, what would be the wavelength of the emitted photon? A) 3.21 nm B) 3.21 pm C) 6.42 pm D) none of these.arrow_forwardNot all metals are the same. If a beam of light produces electrons when shown on a block of cesium, but not a block of copper what does that mean for the threshold frequencyarrow_forward
- A 362-nm wavelength photon strikes the metal surface with a work function of 1.52 eV. What is the maximum .inetic energy of the emitted electrons, KEmax? Give your answer to the nearest hundredth (0.01) eV. Do not give units in your answer. Your Answer: Answer Question 4 What is the energy of a photon of wavelength 237 nm? Give your answer to the nearest hundredth (0.01) eV. Do not give units in your answer. Your Answer: Answerarrow_forwardWhat is the wavelength, in nm, of a 1.74-eV photon? Normal format with 4 SF. Hint: 1 eV = 1.60× 10-1⁹ J.arrow_forwardB7arrow_forward
- Find the ratio of the photon frequency of the 8th line of the Paschen series to the photon frequency of the 3rd line of the Balmer series. Given: h = 4.14 x 1015 ev.s = 6.63 x 10 34 J.s Select one: O a. 0.491 Ob.0.505 Oc.0.795 Od. 0.779arrow_forwardThe work function for platinum is 6.35 eV. Ultraviolet light of wavelength 150 nm is incident on the clean surface of a platinum sample. We wish to predict the stopping voltage we will need for electrons ejected from the surface. (c) What is the maximum kinetic energy of the ejected electrons?arrow_forwardthanks. The work function of sodium is 2.3 eV. What is the longest wavelength that can cause photoelectric emission? What should be the stopping potential if the sodium atom is illuminated by light of λ = 400 nm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning