Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 38, Problem 77CP

(a)

To determine

The angle for the first minimum in the diffraction pattern.

(a)

Expert Solution
Check Mark

Answer to Problem 77CP

The angle for the first minimum in the diffraction pattern is 41.8° .

Explanation of Solution

Write the expression for the minima.

    asinθ=mλ

Here, a is the slit width, θ is the angle, m is the order, and λ is the wave length of wave.

Rewrite the above equation.

    θ=sin1(mλa)                                                                                          (I)

Write the expression to calculate the wavelength.

    λ=cf                                                                                                        (II)

Here, c is the speed of light and f is the frequency of the wave.

Conclusion:

Substitute 7.50GHz for f and 3.00×108 m/s for c in (II) to find λ.

    λ=3.00×108 m/s7.50GHz=3.00×108 m/s7.50GHz×109 Hz1GHz=4.00×102 m

Substitute 4.00×102 m for λ and 6.00cm for a in (I) to find θ.

    θ=sin1(4.00×102 m6.00cm)=sin1(4.00×102 m6.00cm×102 m1cm)=41.8°

Therefore, the angle for the first minimum in the diffraction pattern is 41.8°

(b)

To determine

The relative intensity at 15.0° .

(b)

Expert Solution
Check Mark

Answer to Problem 77CP

The relative intensity at 15.0° is 0.592.

Explanation of Solution

Write the expression for the relative intensity.

    IImax=[sin(ϕ)ϕ]2                                                                                         (III)

Here, IImax is the relative intensity and ϕ is the phase angle.

Write the expression for the phase angle.

    ϕ=πasinθλ                                                                                                  (IV)

Conclusion:

Substitute 4.00×102 m for λ, 41.8° for θ , and 6.00cm for a in (IV) to find ϕ.

    ϕ=π(6.00 cm)sin15.0°4.00×102 m=π(6.00 cm×102m1cm)sin15.0°0.0400 m=1.22 rad

Substitute 1.22 rad for ϕ in (III) to find IImax.

  IImax=[sin(1.22 rad)1.22 rad]2=0.592

Therefore, the relative intensity at 15.0° is 0.592 .

(c)

To determine

Maximum distance between the plane of the sources and the slit if the diffraction pattern are to be resolved.

(c)

Expert Solution
Check Mark

Answer to Problem 77CP

Maximum distance between the plane of the sources and the slit if the diffraction pattern are to be resolved is 0.262m .

Explanation of Solution

Write the expression for the distance between the plane of the sources and the slit.

    L=lcotα                                                                                                      (V)

Here, L is the distance between the plane of the sources and the slit, l is the distance of one source from the midpoint of the plane between the two sources, and α is the angle.

Write the expression between l and the distance between the sources.

    d=2l

Here, d is the distance between the sources.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 38, Problem 77CP

From the figure (I) α=θ2.

Use θ2 for α and 2l for d in (V) and rewrite.

    L=(d2)cot(θ2)                                                                                          (VI)

Conclusion:

Substitute 20.0cm for d and 41.8° for θ  in (VI) to find L.

    L=(20.0cm2)cot(41.8°2)=(20.0cm×102m1cm2)cot(41.8°2)=0.262 m

Therefore, the maximum distance between the plane of the sources and the slit if the diffraction pattern are to be resolved is 0.262m .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A beam of light with wavelength of 1.00 µm and M2 = 20 is incident on an aperture of 1.5 mm diameter. a) Calculate the divergence angle of the beam in degrees (give the cone full-angle). b) Calculate the diameter of the beam at a distance of 10.00 m away from the aperture in the propagation direction in units of cm. c) It is given that the longitudinal (temporal) coherence length is 70 times the transverse (spatial) coherence length. Calculate the wavelength linewidth of the light in units of pm.a
Problem 3: Consider the far-field diffraction pattern of a single slit of width 2.125 µm when illuminated normally by a collimated beam of 550-nm light. Determine (a) the angular radius of its central peak and (b) the ratio I/Io at points making an angle of 0 = 5°, 10°, 15°, and 22.5° with the axis.
Light of wavelength 588.2 nm illuminates a slit of width 0.63 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.86 mm from the central maximum? (b) Calculate the width of the central maximum. Step 1 (a) As shown in the figure, dark bands or minima occur where sin 0 = m(2/a). For the first minimum, m = 1 and the distance from the center of the central maximum to the first minimum is y₁ = L tan 8, where L is the distance of the viewing screen from the slit. 32 sin dark = 22/a 31 sin dark = λ/a HE 0 -1 sin dark = -λ/a -2 sin dark = -22/a Viewing screen a Because is very small, we can use the approximation tan sin 0 = m(2/a). Substituting the approximation and solving for the distance to the screen, we have 6.3 x 10 m ³ m ) (₁ L = = y ₁ ( ² ) = x 10-3 m x 10-⁹ m m.

Chapter 38 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY