Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 38, Problem 73AP

(a)

To determine

The angular dispersion of the grating is dθdλ=mdcosθ.

(a)

Expert Solution
Check Mark

Answer to Problem 73AP

 The angular dispersion of the grating is dθdλ=mdcosθ.

Explanation of Solution

Formula to calculate the angles of bright beams diffracted from the grafting is,

    dsinθ=mλ                                                                                                (I)

Here, d is the spacing between adjacent slits, m is order number of intensity maximum, λ is wavelength of light, and θ is the angle by which ray is diffracted.

Differentiate equation (I) with respect to θ.

    ddλ(dsinθ)=ddλ(mλ)dcosθdθdλ=mdθdλ=mdcosθ

Conclusion:

Therefore, the angular dispersion of the grating is dθdλ=mdcosθ.

(b)

To determine

The angular separation of the two wavelengths in the second order spectrum.

(b)

Expert Solution
Check Mark

Answer to Problem 73AP

The angular separation of the two wavelengths in the second order spectrum is 0.109°.

Explanation of Solution

Number of equally spaced slit to analyze the spectrum of mercury is 8,000. The square grating on each side is 2cm.

The wavelengths of the incident lights are 579.065nm and 576.959nm.

Write the expression of the average wavelength.

    λavg=579.065nm+576.959nm2=578.012nm=578.012×109m

Formula to calculate the spacing between the adjacent slit is,

    d=SquaregratingNumberofequallyspacedslits                                                            (II)

Substitute 0.02 for square grating and 8000 for number of equally spaced slits in equation (II).

    d=0.02m8000=2.5×106

Substitute 2.5×106 for d, 2 for m, 578.012 for λ in equation (1) to calculate θ.

    0.028000sinθ=2(578.012×109m)θ=sin12×578×109m2.5×106m=27.54°

Formula to calculate the separation angle between the lines is,

    Δθ=mdcosθΔλ                                                                                 (III)

Here, Δθ is angular separation, m is order number of intensity maximum, and

Δλ is difference of wavelength of lights.

The difference in wavelength of lights is,

    Δλ=579.065nm576.959nm=2.106nm=2.106×109m

Substitute 2 for m, 27.54 for θ and 2.106×109 for Δλ in equation (3) to calculate Δθ.

    Δθ=2(2.5×106m)cos(27.5°)(2.106×109m)=4.212×1092.217×106=0.00190rad(360°2πrad)=0.109° \

Conclusion:

Therefore, the angular separation of the two wavelengths in the second order spectrum is 0.109°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at A1=1.553µm and 5mW at 12=0.828um. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won't exit the GaAs. What are the absorption coefficients, a, for two different wavelengths?
A metal with body centered cubic (bcc) structure show the first (i.e. smallest angle) diffraction peak at a Bragg angle of 0 = 30°. The wavelength of X-ray used is 2.1 Å. The volume of the PRIMITIVE unit cell of the metal is (a) 26.2 (Å)³ (b) 13.1(Á)³ (c) 9.3 (Á)³ (d) 4.6 (Ấ)³
An oil drop of volume 0.2 c.c. is dropped on the surface of a tank of water of area 1 sq. meter. The film spreads uniformly over the surface and white light which is incident normally is observed through a spectrometer. The spectrum is seen to contain one dark band whose centre has wavelength 5.5 x 10 cm in air. Find the refractive index of. Moil.

Chapter 38 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY