Essential University Physics: Volume 2 (3rd Edition)
3rd Edition
ISBN: 9780321976420
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 66P
To determine
The time for the reactor power to decrease by half given generation time of
0.10 s
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a reactor produces an average power of 1000 MW for a year, a. How much U-235 is used up assuming 200 MeV are released per fission and the efficiency is 33.3%? b. Also, how much mass is turned into energy?
A research reactor, after going critical for the first
time, operates at a power level of 100 W for 4 hours.
How much fission product activity does the reactor
contain at the following times after shutdown of the
reactor?
a) 1 hour,
b) 8 hour,
c) 7 days,
d) 30 days.
the answers have to be in Ci
the answers are:
а: 75.4 Ci @ 1 h
b: 14.2 Ci @ 8 h
с: 0.46 Ci @7 d
d: 0.08 Ci @ 30 d
hour
show me the work please
How many kilograms m of uranium-235 must completely fission spontaneously into 140Xe, 92Sr, and three neutrons to produce 1200 MW of power continuously for one year, assuming the fission reactions are 26% efficient?
m = ? kg
Chapter 38 Solutions
Essential University Physics: Volume 2 (3rd Edition)
Ch. 38.1 - Prob. 38.1GICh. 38.2 - Prob. 38.2GICh. 38.3 - Prob. 38.3GICh. 38.4 - Prob. 38.4GICh. 38.5 - Prob. 38.5GICh. 38 - Prob. 1FTDCh. 38 - Prob. 2FTDCh. 38 - Prob. 3FTDCh. 38 - Prob. 4FTDCh. 38 - Prob. 5FTD
Ch. 38 - Why are iodine-131 and strontium-90 particularly...Ch. 38 - Prob. 7FTDCh. 38 - Prob. 8FTDCh. 38 - Prob. 9FTDCh. 38 - Prob. 10FTDCh. 38 - Prob. 11FTDCh. 38 - Prob. 12FTDCh. 38 - Prob. 13FTDCh. 38 - Prob. 14FTDCh. 38 - Explain the different approaches to the Lawson...Ch. 38 - Prob. 16FTDCh. 38 - Three radon isotopes have 125, 134, and 136...Ch. 38 - Prob. 18ECh. 38 - Prob. 19ECh. 38 - Prob. 20ECh. 38 - Prob. 21ECh. 38 - How many half-lives will it take for the activity...Ch. 38 - Prob. 23ECh. 38 - Prob. 24ECh. 38 - Prob. 25ECh. 38 - Prob. 26ECh. 38 - Prob. 27ECh. 38 - Prob. 28ECh. 38 - Use Fig. 38.9 to estimate the mass defect in...Ch. 38 - Find the total binding energy of oxygen-16, given...Ch. 38 - Determine the nuclear mass of nickel-60, given...Ch. 38 - Prob. 32ECh. 38 - Prob. 33ECh. 38 - Prob. 34ECh. 38 - Prob. 35ECh. 38 - Prob. 36ECh. 38 - Prob. 37ECh. 38 - Prob. 38ECh. 38 - Prob. 39ECh. 38 - Prob. 40ECh. 38 - Prob. 41ECh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Iron-56, with nuclear mass 55.9206 u, is among the...Ch. 38 - Prob. 46PCh. 38 - As a geologist, youre assessing the feasibility of...Ch. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Nitrogen-13 is a 9.97-min-half-lifc isotope used...Ch. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - The table below lists reported levels of...Ch. 38 - Prob. 56PCh. 38 - Analysis of a Moon rock shows that 82% of its...Ch. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Today, uranium-235 comprises only 0.72% of natural...Ch. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Bismuth-209 and chromium-54 combine to form a...Ch. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PPCh. 38 - Prob. 87PPCh. 38 - Prob. 88PPCh. 38 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forward(a) Calculate the energy released in the neutron- induced fission n+238U96Sr+140Xe+3n , given m(96Sr)=95.921750uand m(140Xe)=139.92164 . This result is about 6 MeV greater than the result for spontaneous fission. Why? Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forwardA beam of 168MeV nitrogen nuclei is used for cancer therapy. If this beam is directed onto a 0.200kg tumor and gives it a 2.00Sv dose, how many nitrogen nuclei were stopped? (Use an RBE of 20 for heavy ions.)arrow_forward
- The cure of a nuclear reactor generates a large amount of thermal energy from the decay of fission products, even when the power-producing fission chain reaction is turned off. Would this residual heat be greatest after the reactor has run for a long time or short time? What if the reactor has been shut down for months?arrow_forwardAssume onefourth of the yield of a typical 320kT strategic bomb comes from fission reactions averaging 200 MeV and the remainder from fusion reactions averaging 20 MeV. (a) Calculate the number of fissions and the approximate mass of uranium and plutonium fissioned, taking the average atomic mass to be 238. (b) Find the number of fusions and calculate the approximate mass of fusion fuel, assuming an average total atomic mass of the two nuclei in each reaction to be 5. (c) Considering the masses found, does it seem reasonable that some missiles could carry 10 warheads? Discuss, noting that the nuclear fuel is only a part of the mass of a warhead.arrow_forwardIn considering potential fusion reactions, what is the advantage of the reaction 2H+3H4He+n over the reaction 2H+2H3He+n ?arrow_forward
- (a) Calculate the energy released in the neutron- Induced fission reaction n+235U92Kr+142Ba+2n , given m(92Kr) = 91.926269 u and m(142Ba)= 141.916361 u. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forward(a) A cancer patient is exposed to rays from a 5000Ci 60Co transillumination unit for 32.0 s. The rays are collimated in such a manner that only 1.00% of them strike the patient. Of those, 20.0% are absorbed in a tumor having a mass of 1.50 kg. What is the dose in rem to the tumor, it the average energy per decay is 1.25 MeV? None of the s from the decay reach the patient. (b) Is the dose consistent with stated therapeutic doses?arrow_forwardData from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forward
- A neutron generator uses an (source, such as radium, to bombard beryllium, inducing the reaction 4He+9Be12C+n. Such neutron sources are called RaBe sources, 0r PuBe sources if they use plutonium to get the (s. Calculate the energy output of the reaction in MeV.arrow_forward(a) Calculate the energy released in the neutroninduced fission (similar to the spontaneous fission in Example 32.3) n+238U96Sr+140Xe+3n, given m(96Sr)=95.921750u and m(140Xe)=139.92164. (b) This result is about 6 MeV greater than the result for spontaneous fission. Why? (c) Con?rm that the total number at nucleons and total charge are conserved in this reaction.arrow_forwardA large power reactor that has been in operation for some months is turned off, but residual activity in the core still produces 150 MW of power. If the average energy per decay of the fission products is 1.00 MeV, what is the core activity in curies?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning