Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 39P
To determine
The estimate of the difference between the actual kinetic energy and
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need help with d,e and f only
a.An atwoods machine consists of two blocks, A (m=1.3 kg) and B (m=8.7kg). Block B is released from rest at a height of 1.3 meters above the floor, while Block A began on the floor. What is the total energy of the system just before being released.
b. Assuming there is negligible friction, how fast is Block B moving just before hitting the ground
c. Now lets assume there is friction. Suppose block B actually reaches the floor with a speed of 0.23 m/sec. How much energy was dissipated by friction
Problem
A moving electron has a Kinetic Energy K1. After a net amount of work is done on it, the electron is moving one-quarter as fast in the opposite direction. What is the work done
W in terms of Kq?
Solution
To solve for the work done, first we must determine what is the final kinetic energy of the electron.
By concept, we know that
K1=(1/2)mv²,
K2=(1/2)mv2
But it was mentioned that:
so, Kz in terms of v is
K2=(
)mv²1
Substituting the expression for K1 results to
K2=(
Since work done is
W=AK=K
-K
Evaluating results to
W=(
)K1
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.1 - Which observer in Figure 38.1 sees the balls...Ch. 38.1 - Prob. 38.2QQCh. 38.4 - Suppose the observer O on the train in Figure 38.6...Ch. 38.4 - Prob. 38.4QQCh. 38.4 - Prob. 38.5QQCh. 38.4 - You are observing a spacecraft moving away from...Ch. 38.6 - You are driving on a freeway at a relativistic...Ch. 38.8 - Prob. 38.8QQCh. 38 - In a laboratory frame of reference, an observer...Ch. 38 - Prob. 2P
Ch. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - An astronaut is traveling in a space vehicle...Ch. 38 - Prob. 7PCh. 38 - You have been hired as an expert witness for an...Ch. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 38 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 38 - You have an assistantship with a math professor in...Ch. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - A moving rod is observed to have a length of =...Ch. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - You have been hired as an expert witness in the...Ch. 38 - Figure P38.21 shows a jet of material (at the...Ch. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - (a) Find the kinetic energy of a 78.0-kg...Ch. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - An unstable particle with mass m = 3.34 1027 kg...Ch. 38 - Prob. 41PCh. 38 - Prob. 42APCh. 38 - Prob. 43APCh. 38 - Prob. 44APCh. 38 - Prob. 45APCh. 38 - Prob. 46APCh. 38 - Prob. 47APCh. 38 - Prob. 48APCh. 38 - Prob. 49APCh. 38 - Prob. 50APCh. 38 - Prob. 51APCh. 38 - Prob. 52APCh. 38 - The creation and study of new and very massive...Ch. 38 - Prob. 54CPCh. 38 - Prob. 55CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A train moves along the tracks at a constant speed u. A woman on the train throws a ball of mass m straight ahead with a speed υ with respect to herself. (a) What is the kinetic energy gain of the ball as measured by a person on the train? (b) by a person standing by the railroad track? (c) How much work is done by the woman throwing he ball and (d) by the train?arrow_forward(a) What is the change in energy of a 1000-kg payload taken from rest at the surface of Earth and placed at rest on the surface of the Moon? (b) What would be the answer if the payload were taken from the Moon’s surface to Earth? Is this a reasonable calculation of the energy needed to move a payload back and forth?arrow_forwardA cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume in this problem that air drag is negligible. (a) What is the kinetic energy of the ball as it leaves the hand? (b) How much work is done by the gravitational force during the ball’s rise to its peak? (c) What is the change in the gravitational potential energy of the ball during the rise to its peak? (d) If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when it reaches the maximum height? (e) What if the gravitational potential energy is taken to be zero at the maximum height the ball reaches, what would the gravitational potential energy be when it leaves the hand? (f) What is the maximum height the ball reaches?arrow_forward
- The potential energy function for either one of the two atoms in a diatomic molecule is often approximated by U(x)=a/x12b/x6 where x is the distance between the atoms. (a) At what distance of separation does the potential energy have a local minimum (x=) ? What is the force on an atom at this separation? (c) How does the force vary with the separation distance?arrow_forwardProblem A moving electron has a Kinetic Energy K1. After a net amount of work is done on it, the electron is moving one-quarter as fast in the opposite direction. What is the work done W in terms of K1? Solution To solve for the work done, first we must determine what is the final kinetic energy of the electron. By concept, we know that K1=(1/2)mv², K2=(1/2)mv2 But it was mentioned that: v2=( V1 so, K2 in terms of v1 is K2=( mv², Substituting the expression for K1 results to K2=( )K1 Since work done is W=AK=K -K Evaluating results to W=( )K1arrow_forwardProblem A moving electron has a Kinetic Energy K1. After a net amount of work is done on it, the electron is moving one-quarter as fast in the opposite direction. What is the work done Win terms of K1? Solution To solve for the work done, first we must determine what is the final kinetic energy of the electron. By concept, we know that K1=(1/2)mv²1 K2=(1/2)my2 But it was mentioned that: v2=( v1 so, K2 in terms of v1 is K2=( )mv², Substituting the expression for K1 results to K2=( Since work done is W=AK=K -K Evaluating results to W=( K1arrow_forward
- Problem A moving electron has a Kinetic Energy Kq. After a net amount of work is done on it, the electron is moving one-quarter as fast in the opposite direction. What is the work done Win terms of Kq? Solution To solve for the work done, first we must determine what is the final kinetic energy of the electron. By concept, we know that K1=(1/2)mv21 K2=(1/2)mv2 But it was mentioned that: v2=( so, K2 in terms of vq is K2=( )mv²1 Substituting the expression for K1 results to K2=( K1 Since work done is W=AK=K -K Evaluating results to W=( K1arrow_forwardWhat's this?arrow_forwardA roller coaster cart (m = 100. Kg) is at the top of a hill which is 50. m above ground level. It starts from rest. a) How much energy does the cart have? b) What type(s) of energy will it have at the bottom of the hill? How much energy? c) What will its speed be at the bottom of the hill? d) After it goes down the first hill it climbs up a second hill which is 30. m high. What type(s) of energy will it have when it climbs up this hill? e) What will its speed be at the 30.m height? f) If the cart lost 20. % of its energy due to friction when it went down the first hill, what speed would it have at the bottom?arrow_forward
- A block with mass m = 2 kg is projected up an inclined plane with initial speed vo = 3 m/s. The angle of the incline is θ = 29°. The coefficient of kinetic friction between the block and plane is 0.5. a. What is ∆Eth (the change in thermal energy) for the process? b. How far up the plane will the block travel? State the distance along the incline, not the height that the block will reach.arrow_forward(Figure 1) shows your 1.5 kg laptop computer being dragged up a 25° slope at steady speed by a rope with tension 17 N. Both the laptop and the slope are getting warmer because of friction. We want to find the increase in thermal energy if the laptop is pulled 2.0 m. Figure 125° 1 of 1 Part C How much work does the normal force do on the laptop as it moves 2.0 m? Express your answer with the appropriate units. ► View Available Hint(s) W₁ = Submit Part D WG = 0 Submit HÅ Value How much work does the gravity do on the laptop as it moves 2.0 m? Express your answer with the appropriate units. ► View Available Hint(s) μA Ć Units Value ? Units ?arrow_forwarda. A 10.0 kg object has an initial velocity of (5.0i + 3.0j) m/s. What is its kinetic energy at this time? KE = ½ mv² where v² = V.Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY