Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 35P
(a)
To determine
The number of readings per centimeter.
(b)
To determine
The total number of primary maxima.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A laser beam is normally incident on a diffraction grating. The wavelength of the incident light is 1 = 560 nm, and the third-order
maximum of the diffraction pattern is measured to be at an angle of 32.0°.
(a) What is the density of rulings for the grating (in grooves/cm)?
grooves/cm
(b) Determine the total number of primary maxima that can be observed in this situation.
primary maxima
Need Help?
Read It
(a) White light is spread out into its spectral components by a diffraction grating. If the grating has 1,970 grooves per centimeter, at what angle (in degrees) does red light of wavelength 640 nm appear in first order? (Assume that the light is incident normally on the gratings.)
7.35°
(b) What If? What is the angular separation (in degrees) between the first-order maximum for 640 nm red light and the first-order maximum for blue light of wavelength 450 nm?
°
please help
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 38.2 - Suppose the slit width in Figure 37.4 is made half...Ch. 38.2 - Prob. 38.2QQCh. 38.3 - Cats eyes have pupils that can be modeled as...Ch. 38.3 - Suppose you are observing a binary star with a...Ch. 38.4 - Ultraviolet light of wavelength 350 nm is incident...Ch. 38.6 - A polarizer for microwaves can be made as a grid...Ch. 38.6 - Prob. 38.7QQCh. 38 - Prob. 1OQCh. 38 - Prob. 2OQCh. 38 - Prob. 3OQ
Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardOn a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forward
- A "diffraction" grating is made up of slits of width 310nm with a 930nm separation between centers. The grating is illuminated by monochromatic plane waves, λ=615nm, with the angle of incidence zero. (a) How many diffraction (or interference if you prefer that nomenclature) maxima are there? (b) Find the width of the spectral lines observed in the first order if the grating has 1120 slitsarrow_forward(a) White light is spread out into its spectral components by a diffraction grating. If the grating has 2,020 grooves per centimeter, at what angle (in degrees) does red light of wavelength 640 nm appear in first order? (Assume that the light is incident normally on the gratings.) (b) What If? What is the angular separation (in degrees) between the first-order maximum for 640 nm red light and the first-order maximum for green light of wavelength 525 nm? Need Help? Read It Master Itarrow_forward(a) White light is spread out into its spectral components by a diffraction grating. If the grating has 1,990 grooves per centimeter, at what angle (in degrees) does red light of wavelength 640 nm appear in first order? (Assume that the light is incident normally on the gratings.) (b) What If? What is the angular separation (in degrees) between the first-order maximum for 640 nm red light and the first- order maximum for orange light of wavelength 600 nm? Need Help? Read It Master Itarrow_forward
- Light of wavelength 5.00x 102 nm is incident normally on a diffraction grating. If the third - order maximum of the diffraction pattern is observed at 32.0°, (a) what is the number of rulings per centimeter for the grating? (b) Determine the total number of primary maxima that can be observed in this situation.arrow_forwardA diffraction grating is made up of slits of width 300 nm with separation 900 nm. The grating is illuminated by monochromatic plane waves of wavelength l = 600 nm at normal incidence. (a) How many maxima are there in the full diffraction pattern? (b)What is the angular width of a spectral line observed in the first order if the grating has 1000 slits?arrow_forward(a) Find the angle between the first minima for the two sodium vapor lines, which have wavelengths of 589.1 and 589.6 nm, when they fall upon a single slit of width 2.00 µm . (b) What is the distance between these minima if the diffraction pattern falls on a screen 1.00 m from the slit? (c) Discuss the ease or difficulty of measuring such a distance.arrow_forward
- Light of wavelength 585.5 nm illuminates a slit of width 0.70 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.93 mm from the central maximum? Answer in m (b) Calculate the width of the central maximum. Answer in mmarrow_forwardQuality control systems have been developed to remotely measure the diameter of wires using diffraction. A wire with a stated diameter of 170 μm blocks the beam of a 633 nm laser, producing a diffraction pattern on a screen 50.0 cm distant. The width of the central maximum is measured to be 3.77 mm. The wire should have a diameter within 1% of the stated value.Does this wire pass the test?arrow_forwardRecall from class that the resolution is limited due to the nature of light. More specifically, since light diffracts as it goes through a small opening, it becomes difficult to differentiate two light sources when the diffraction central peak from one source overlaps with the first minimum of the second source, as shown in the figure below. (a) The pupil of the human eye has an aperture of around 5mm, and visible light has wavelengths peaked around 500nm. Estimate the angular resolution of the human eye (that is, the smallest angle for which you could distinguish that light was coming from two different directions). (b) Suppose two point sources of light were separated by a distance x, and you are standing one meter away from them. Estimate the smallest distance x for which you could tell that there were two point sources (rather than just one).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY