Problems 7 through 10 deal with the RC circuit in Fig. 3.7.8, containing a resistor (R ohms), a capacitor (C farads), a switch, a source of emf, but no inductor Substitution of
for the charge
Suppose that in the circuit of Fig. 3.7.8,
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Additional Engineering Textbook Solutions
Modern Database Management
SURVEY OF OPERATING SYSTEMS
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Starting Out with Python (4th Edition)
Problem Solving with C++ (10th Edition)
Degarmo's Materials And Processes In Manufacturing
- 3. You have seen how Kirchhoff's laws were used in your lectures to obtain a 2nd order differential equation where we solved for the current. This time we will use an even simpler concept: principle of conservation of energy to derive the 2nd order differential equation where we will solve for the charge. Take a look at the circuit below. IHE 2F In the circuit above, we have a capacitor with capacitance 2 F, an inductor of inductance 5 H and a resistor of 32 (a) The total energy that is supplied to the resistor is LI? E = 2 Q? 20 where L is the inductance, I is the current, C is the capacitance and Q is the charge. Write down the total energy supplied E in terms of Q and t only. OP Remember that I = dt (b) Now you know that the power dissipation through a resistor is -1R. Use the conservation of energy (energy gain rate = energy loss rate) to derive the differential equation in terms Q and t only. (c) Solve the differential equation for initial charge to be Qo with a initial current of…arrow_forwardDetermine the transfer function, of the rotational mechanical system shown in T(s) Figure Q2. The variables 6,(t) and 02(t) refer to angular displacement of motion, while T(t) is a torque applied to the system. Given the value of spring, damping coefficient and inertia as; J: 5 kg-m? Di: 5 N-m-s/rad J2: 10 kg-m? K : 6 N-m/rad K2 : 5 N-m/rad D::4 N-m-s/rad D3:2 N-m-s/rad T(t) e,(1) D2 K2 0000 D1 D3 Figure Q2arrow_forward1) Given the sinusoidal voltage v(t) 50 cos(30t + 10°) V, find: (a) the amplitude Vm, (b) the period T, (c) the frequency f, and (d) v(t) at t= 10 ms.arrow_forward
- PROBLEM 24 - 0589: A forced oscillator is a system whose behavior can be described by a second-order linear differential equation of the form: ÿ + Ajý + A2y (t) = (1) where A1, A2 are positive %3D E(t) constants and E(t) is an external forcing input. An automobile suspension system, with the road as a vertical forcing input, is a forced oscillator, for example, as shown in Figure #1. Another example is an RLC circuit connected in series with an electromotive force generator E(t), as shown in Figure #2. Given the initial conditions y(0) = Yo and y(0) = zo , write a %3D FORTRAN program that uses the modified Euler method to simulate this system from t = 0 to t = tf if: Case 1: E(t) = h whereh is %3D constant Case 2: E(t) is a pulse of height h and width (t2 - t1) . Case 3: E(t) is a sinusoid of amplitude A, period 2n/w and phase angle p . E(t) is a pulse train Case 4: with height h, width W, period pW and beginning at time t =arrow_forwardQuestions 1. Special electrical circuits called LC circuits are critical to the operation of the tuning dial on a car radio. The charge Q(t) (measured in units of Coulombs C) in an LC circuit at any given time t (measured in seconds s) subject to a given voltage V(t) (given in Joules per Coulomb, J/C) obeys the expression LQ" (t) + + =—= Q(t) = = V(t) where L, c are given constants depending on the particular design of the circuit. What are the units of L and c? ⚫L and care unit-less. ⚫ The units of L are Js2/C2 and the units of c are J/C². • The units of L are Js2/C2 and the units of c are C²/J. ⚫ The units of L are J/C2 and the units of c are C²/J. ⚫ The units of L are J/C² and the units of c are J/C². 1 of 7 2. Matt collects vinyl records, but he doesn't always keep every record he buys. Let K(t) be the total number of vinyl records Matt has kept from the moment he started collecting up to week t, where t is the number of weeks since January 1, 2024. Which of the statements below is…arrow_forwardA tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire. (a) Number i 66.0 (b) Number i Units Hz Unitsarrow_forward
- Logic Function F (x, y, z, w) = ∑ m (0,2,4,6,10,13) + ∑ k (8,12) as sum of minimers are given. (Note: There are terms that are not taken into account.) a. Obtain the Truth Table. b. Simplify with the Karnough Map approach. c. Draw the simplified Logic circuit with two input AND-NOT (NAND) gates. With how many apples you realized, what is your gain? Comment.arrow_forwardProblem (1) For the circuit shown in fig. find the current supplied by the battery by using delta/star transformation 400 www 2002 500 30 V 2002 www 30Ω www 5Ω wwarrow_forwardAns [3.43A , 0.506 , 2.12A , 0.942] Q16/ The star-connected rotor of a 3-phase induction motor has a resistance and standstill reactance 0.4 Q/phase respectively. The e.m.f. induced between the slip rings at standstill is 80V, the stator being connected to a normal supply voltage. Find the rotor current and power factor at starting when the rings are (i) short-circuited (ii) joined to star-connected Ans [18.25A , 0.16,7.76 , 0.91] resistance of 52/phase.arrow_forward
- In the Bohr model of the hydrogen atom, an electron in the 4th excited state moves at a speed of 1.37 x 105 m/s in a circular path of radius 8.46 x 1010 m. What is the effective current associated with this orbiting electron? 4.12373E3 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. mAarrow_forwardB) Solve the differential equation by using Laplace transform y" - y = -t² y(0)=2 and y'(0)=0arrow_forward- For the following logic functions find their minimal SOP using Karnaugh maps. (a) F =Σx,y,z(1,3,5,6,7) (c) F=Пwxy(1,4,5, 6, 7) (e) F = ПIA.B.C.D(4, 5, 6, 13,15) (b) F=Σw.X.YZ(1,4,5,6,7,9,14,15) (d) FΣw.x.Y.z(0,1,6,7,8,9,14,15) (f) FΣA.B.C.D(4,5,6, 11, 13,14,15)arrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr