Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 14Q
For a certain diffraction grating, the ratio λ/a of wavelength to ruling spacing is 1/3.5. Without written calculation or use of a calculator, determine which of the orders beyond the zeroth order appear in the diffraction pattern.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For a certain diffraction grating, the ratio l/a of wavelength to ruling spacing is 1/3.5.Without written calculation or use of a calculator, determine which of the orders beyond the zeroth order appear in the diffraction pattern.
You measure three segments of the distance between a diffraction slit an the screen on which the pattern forms: x1 = (14.7 ± 0.1) cm, x2 = (9.9 ± 0.3) cm, and x3 = (17.2 ± 0.3) cm. What is the uncertainty of the total distance x1 + x2 + x3?
The full width at half-maximum (FWHM) of a central diffraction maximum is defined as the angle between the two points in the
pattern where the intensity is one-half that at the center of the pattern. (See figure (b).) (a) Does the intensity drop to one-half the
maximum value when sin²α = a²/2? (b) Is a = 1.39 rad (about 80°) a solution to the transcendental equation of (a)? (c) Is the FWHM AÐ
= 2sin¹(0.442 A/a), where a is the slit width? Calculate the FWHM of the central maximum for slit width (d) 1.17 A, (e) 5.03 A, and (f)
11.7 A.
20
20
Relative intensity
15 10
0.8
0.6
a=2
0.4
0.2
5 05
8 (degrees)
(a)
10 15 20
20
Relative intensity
1.0
0.8
0.6
-A0-
0.4
0.2
a= 52
20
15
10
5 0 5
10
15 20
(degrees)
(b)
Chapter 36 Solutions
Fundamentals of Physics Extended
Ch. 36 - You are conducting a single-slit diffraction...Ch. 36 - In a single-slit diffraction experiment, the top...Ch. 36 - For three experiments, Fig. 36-30 gives the...Ch. 36 - For three experiments, Fig. 36-31 gives versus...Ch. 36 - Figure 36-32 shows four choices for the...Ch. 36 - Prob. 6QCh. 36 - At night many people see rings called entoptic...Ch. 36 - a For a given diffraction grating, does the...Ch. 36 - Figure 36-33 shows a red line and a green line of...Ch. 36 - For the situation of Question 9 and Fig. 36-33, if...
Ch. 36 - a Figure 36-34a shows the lines produced by...Ch. 36 - Figure 36-35 shows the bright fringes that lie...Ch. 36 - In three arrangements you view two closely spaced...Ch. 36 - For a certain diffraction grating, the ratio /a of...Ch. 36 - GO The distance between the first and fifth minima...Ch. 36 - What must be the ratio of the slit width to the...Ch. 36 - A plane wave of wavelength 590 nm is incident on a...Ch. 36 - In conventional television, signals are broadcast...Ch. 36 - A single slit is illuminated by light of...Ch. 36 - Monochromatic light of wavelength 441 nm is...Ch. 36 - Light of wavelength 633 nm is incident on a narrow...Ch. 36 - Sound waves with frequency 3000 Hz and speed 343...Ch. 36 - SSM ILW A slit 1.00 mm wide is illuminated by...Ch. 36 - GO Manufacturers of wire and other objects of...Ch. 36 - A 0.10-mm-wide slit is illuminated by light of...Ch. 36 - Figure 36-38 gives versus the sine of the angle ...Ch. 36 - Monochromatic light with wavelength 538 nm is...Ch. 36 - In the single-slit diffraction experiment of Fig....Ch. 36 - SSM WWW The full width at half-maximum FWHM of a...Ch. 36 - Babinets principle. A monochromatic beam of...Ch. 36 - a Show that the values of a at which intensity...Ch. 36 - The wall of a large room is covered with acoustic...Ch. 36 - a How far from grains of red sand must you be to...Ch. 36 - The radar system of a navy cruiser transmits at a...Ch. 36 - SSM WWW Estimate the linear separation of two...Ch. 36 - Prob. 22PCh. 36 - SSM The two headlights of an approaching...Ch. 36 - Entoptic halos. If someone looks at a bright...Ch. 36 - ILW Find the separation of two points on the Moons...Ch. 36 - The telescopes on some commercial surveillance...Ch. 36 - If Superman really had x-ray vision at 0.10 nm...Ch. 36 - GO The wings of tiger beetles Fig. 36-41 are...Ch. 36 - a What is the angular separation of two stars if...Ch. 36 - GO Floaters. The floaters you see when viewing a...Ch. 36 - SSM Millimeter-wave radar generates a narrower...Ch. 36 - a A circular diaphragm 60 cm in diameter...Ch. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Suppose that the central diffraction envelope of a...Ch. 36 - A beam of light of a single wavelength is incident...Ch. 36 - In a double-slit experiment, the slit separation d...Ch. 36 - In a certain two-slit interference pattern, 10...Ch. 36 - Light of wavelength 440 nm passes through a double...Ch. 36 - GO Figure 36-45 gives the parameter of Eq. 36-20...Ch. 36 - GO In the two-slit interference experiment of Fig....Ch. 36 - GO a In a double-slit experiment, what largest...Ch. 36 - SSM WWW a How many bright fringes appear between...Ch. 36 - Perhaps to confuse a predator, some tropical...Ch. 36 - A diffraction grating 20.0 mm wide has 6000...Ch. 36 - Visible light is incident perpendicularly on a...Ch. 36 - SSM ILW A grating has 400 lines/mm. How many...Ch. 36 - A diffraction grating is made up of slits of width...Ch. 36 - SSM WWW Light of wavelength 600 nm is incident...Ch. 36 - With light from a gaseous discharge tube incident...Ch. 36 - GO A diffraction grating having 180 lines/mm is...Ch. 36 - GO A beam of light consisting of wavelengths from...Ch. 36 - Prob. 53PCh. 36 - Derive this expression for the intensity pattern...Ch. 36 - SSM ILW A source containing a mixture of hydrogen...Ch. 36 - a How many rulings must a 4.00-cm-wide diffraction...Ch. 36 - Light at wavelength 589 nm from a sodium lamp is...Ch. 36 - A grating has 600 rulings/mm and is 5.0 mm wide. a...Ch. 36 - A diffraction grating with a width of 2.0 cm...Ch. 36 - Prob. 60PCh. 36 - With a particular grating the sodium doublet...Ch. 36 - A diffraction grating illuminated by monochromatic...Ch. 36 - Assume that the limits of the visible spectrum are...Ch. 36 - What is the smallest Bragg angle for x rays of...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - If first-order reflection occurs in a crystal at...Ch. 36 - X rays of wavelength 0.12 nm are found to undergo...Ch. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Consider a two-dimensional square crystal...Ch. 36 - An astronaut in a space shuttle claims she can...Ch. 36 - SSM Visible light is incident perpendicularly on a...Ch. 36 - A beam of light consists of two wavelengths,...Ch. 36 - SSM In a single-slit diffraction experiment, there...Ch. 36 - GO A double-slit system with individual slit...Ch. 36 - SSM A diffraction grating has resolving power R =...Ch. 36 - The pupil of a persons eye has a diameter of 5.00...Ch. 36 - Prob. 81PCh. 36 - A grating with d = 1.50 m is illuminated at...Ch. 36 - SSM In two-slit interference, if the slit...Ch. 36 - GO In a two-slit interference pattern, what is the...Ch. 36 - A beam of light with a narrow wavelength range...Ch. 36 - If you look at something 40 m from you, what is...Ch. 36 - Two yellow flowers are separated by 60 cm along a...Ch. 36 - In a single-slit diffraction experiment, what must...Ch. 36 - A diffraction grating 3.00 cm wide produces the...Ch. 36 - A single-slit diffraction experiment is set up...Ch. 36 - A diffraction grating has 8900 slits across 1.20...Ch. 36 - In an experiment to monitor the Moons surface with...Ch. 36 - In June 1985, a laser beam was sent out from the...Ch. 36 - A diffraction grating 1.00 cm wide has 10 000...Ch. 36 - SSM If you double the width of a single slit, the...Ch. 36 - When monochromatic light is incident on a slit...Ch. 36 - A spy satellite orbiting at 160 km above Earths...Ch. 36 - Suppose that two points are separated by 2.0 cm....Ch. 36 - A diffraction grating has 200 lines/mm. Light...Ch. 36 - A diffraction grating has 200 rulings/mm, and it...Ch. 36 - Prob. 101PCh. 36 - Monochromatic light wavelength = 450 nm is...Ch. 36 - Light containing a mixture of two wavelengths, 500...Ch. 36 - Prob. 104PCh. 36 - Show that a grating made up of alternately...Ch. 36 - Light of wavelength 500 nm diffracts through a...Ch. 36 - If, in a two-slit interference pattern, there are...Ch. 36 - White light consisting of wavelengths from 400 nm...Ch. 36 - If we make d = a in Fig. 36-50, the two slits...Ch. 36 - Derive Eq. 36-28, the expression for the...Ch. 36 - Prob. 111PCh. 36 - How many orders of the entire visible spectrum...Ch. 36 - An acoustic double-slit system of slit separation...Ch. 36 - Two emission lines have wavelengths and ,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. What are the primary functions of the skeletal system?
Human Anatomy & Physiology (2nd Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
The enzyme that catalyzes the C C bond cleavage reaction that converts serine to glycine removes the substitue...
Organic Chemistry (8th Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardanswer in radianarrow_forward
- A diffraction grating has a width of 3.5 cm and has 100 lines/cm. Could this diffraction grating be used to resolve the lines of the sodium doublet to the first order? The lines of the sodium doublet are ₁ = 588.995 nm and 12 = 589.592 nm.arrow_forwardLight with a wavelength of 535 nm is incident on a diffraction grating and the diffraction pattern is displayed on a screen. Careful measurements show that 01 = 8.5° ± 1.9°. πΝσο Determine N. Also determine the uncertainty of N using the following formula: N = 180tan0₁ N = ON = lines/m lines/marrow_forwardLight with a wavelength of 827 nm is incident on a diffraction grating and the diffraction pattern is displayed on a screen. Careful measurements show that ₁ = 9.4° ± 1.3° No Determine N. Also determine the uncertainty of N using the following formula: 180 N= x lines/marrow_forward
- You measure three segments of the distance between a diffraction slit an the screen on which the pattern forms: x1 = (15.8 ± 0.2) cm, x2 = (6.7 ± 0.1) cm, and x3 = (11.3 ± 0.1). What is the uncertainty of the total distance x1 + x2 + x3? Group of answer choices 0.4 cm 0.5 cm 0.2 cm 0.3 cm 0.1 cmarrow_forwardWhen a diffraction pattern of a crystalline solid is recorded using an X-ray beam of wavelength 0.26 nm, the first order diffraction peak occurs at a scattering angle of 35°. If the error in the measurements of angle and wavelength are 1° and 0.01 nm respectively, then determine the error in measuring the interplanar spacing. (a) 22.86 nm (b) 32.38 nm (c) 15.2 nm (d) 13.2 nmarrow_forwardA diffraction grating has 1570 lines/cm. What is the highest order m that contains the entire visible spectrum from 400 nm to 700 nm? (a) m = 4 (b) m = 9 (c) m = 3 (d) m = 2 (e) m = 5arrow_forward
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 33.30 relative to its surface, using an x-ray source of unknown wavelength. Additionally, when illuminated with a different x-ray, this time of known.wavelength 0.205 nm, a second-order maximum is detected at 22.20. Determine the spacing between the reflecting planes.. Select one: O a. 0.19nm O b. 1.84nm O c. 0.27nm O d. 0.54nmarrow_forwardThe hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434 nm. What are the angular separations between these two spectral lines for all visible orders obtained with a diffraction grating that has 5,000 grooves/cm? (In this problem assume that the light is incident normally on the gratings.)arrow_forwardFirst-order Bragg diffraction is observed at 23.8° relative to the crystal surface, with spacing between atoms of 0.24 nm. (a) At what angle will second order be observed? (b) What is the wavelength of the X-rays?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY