Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 35, Problem 31P
To determine

The expected angle of refraction in the sheet 3.

Expert Solution & Answer
Check Mark

Answer to Problem 31P

The expected angle of refraction in the sheet 3 is 23.1°.

Explanation of Solution

Assume n1, n2 and n3 as the refractive indices of sheets 1, 2 and 3 respectively.

The following figure shows the refraction of the laser beam when the sheet 1 is placed on top of the sheet 2.

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term, Chapter 35, Problem 31P , additional homework tip  1

Figure-(1)

Write the equation using Snell’s law in the above figure.

    sinisin(26.5°)=n1                                                                                                         (I)

Here, i is the angle of incidence on the sheet 1.

Write the equation using Snell’s law in the figure-(1).

    sin(26.5°)sin(31.7°)=n2n1                                                                                                      (II)

The following figure shows the refraction of the laser beam when the sheet 3 is placed on top of the sheet 2.

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term, Chapter 35, Problem 31P , additional homework tip  2

Figure-(2)

Write the equation using Snell’s law in the above figure.

    sinisin(r)=n3sinr=sinin3                                                                                                          (III)

Here, r is the angle of refraction in the sheet 3.

Write the equation using Snell’s law in the figure-(2).

    sin(r)sin(36.7°)=n2n3sin(r)=n2n3sin(36.7°)                                                                                     (IV)

Compare the equations (III) and (IV).

    sinin3=n2n3sin(36.7°)n2=sinisin(36.7°)                                                                                                (V)

The following figure shows the refraction of the laser beam when the sheet 1 is placed on top of the sheet 3.

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term, Chapter 35, Problem 31P , additional homework tip  3

Figure-(3)

Write the equation using Snell’s law in the above figure.

    sinisin(r)=n1sin(r)=n1(sini)                                                                                                   (VI)

Here, r is the angle of refraction in the sheet 1.

Write the equation using Snell’s law in the figure-(2).

    sin(r)=n3n1sin(θ)                                                                                                (VII)

Here, θ is the angle of refraction in the sheet 3.

Compare the equations (VI) and (VII).

    n1(sini)=n3n1sin(θ)sinisinθ=n3                                                                                            (VIII)

The angle of refraction in the sheet 1 when the sheet 1 is placed on top of the sheet 3 is equal to the angle of refraction in the sheet 1 when the sheet 1 is placed on top of the sheet 2.

    r=26.5°

The angle of refraction in the sheet 3 when the sheet 3 is placed on top of the sheet 2 is equal to the angle of refraction in the sheet 1 when the sheet 1 is placed on top of the sheet 2.

    r=26.5°

Rewrite the equation (IV).

    sin(26.5°)sin(36.7°)=n2n3n3n2=sin(36.7°)sin(26.5°)

Rewrite the equation (II).

    n2n1=sin(26.5°)sin(31.7°)

Conclusion:

Substitute 26.5° for r in the equation (VII).

    sin(26.5°)=n3n1sin(θ)sin(26.5°)sin(θ)=n3n1sin(26.5°)sin(θ)=n3n2×n2n1

Substitute sin(36.7°)sin(26.5°) for n3n2 and sin(26.5°)sin(31.7°) for n2n1 in the above equation to calculate the angle of refraction in the sheet 3.

    sin(26.5°)sin(θ)=sin(36.7°)sin(26.5°)×sin(26.5°)sin(31.7°)sinθ=0.3923θ=23.1°

Therefore, the expected angle of refraction in the sheet 3 is 23.1°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2, and a laser beam is directed onto the sheets from above so that it strikes the interface at an angle of 26.6deg with the normal. The refracted beam in sheet 2 makes an angle of 31.4deg with the normal. The experiment is repeated with sheet 3 on top of sheet 2 and, with the same angle of incidence, the refracted beam makes an angle of 36.8deg with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, what is the expected angle of refraction in sheet 3? Assume the same angle of incidence.
Three sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2, and a laser beam is directed onto the sheets from above so that it strikes the interface at an angle of 26.50 with the normal. The refracted beam in sheet 2 makes an angle of 31.70 with the normal. The experiment is repeated with sheet 3 on top of sheet 2, and with the same angle of incidence, the refracted beam makes an angle of 36.70 with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, determine the expected angle of refraction in sheet 3? Assume the same angle of incidence.    2. A 50 g ice cube at 00C is heated until 45 g has become water at 1000C and 5 g has become steam at 1000C. Determine the amount of heat that can be added to accomplish this?
Three sheets of plastic have unknown indices of refraction.Sheet 1 is placed on top of sheet 2, and a laser beam is directed unto the sheets from above so that it strikes the interface at an angle of 26.5 degrees with the normal. The refracted beam in sheet 2 makes an angle of 31.7 degrees with the normal. The experiment is repeated with sheet 3 on top of sheet 2, and with the same angle of incidence, the refracted beam makes an angle of 36.7 degrees with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, determine the expected angle of refraction in sheet 3?. Assume the same angle of incidence.

Chapter 35 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY