Introduction to Electrodynamics
Introduction to Electrodynamics
4th Edition
ISBN: 9781108420419
Author: David J. Griffiths
Publisher: Cambridge University Press
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3.4, Problem 3.43P

A conducting sphere of radius a, at potential V 0 , is surrounded by athin concentric spherical shell of radius b. over which someone has glued a surfacecharge σ ( θ ) = k cos θ , where k is a constant and θ is the usual spherical coordinate.
(a) Find the potential in each region: (I) r > b , and (ii) a < r < b .
(b) Find the induced surface charge σ i ( θ ) on the conductor.
(c) What is the total charge of this system? Check that your answer is consistentwith the behavior of V at large r.
   [ A n s w e r V : ( r , θ ) = { a V 0 / r + ( b 3 a 3 ) k cos θ / 3 r 2 0 , a V 0 / r + ( r 3 a 3 ) k cos θ / 3 r 2 0 , r b r b ] ]

Blurred answer
07:30
Students have asked these similar questions
U:12) On a square wire frame of side length a in empty space, there is pi linear charge density. Calculate the value of the potential V = ke • Pi · A [Volt] at the height h = 4 • a on the strut exiting the center of this square frame. Find the numerical value of the value of A?
A uniform insulating sphere of radius a with charge Q1 = 0.8 nCis concentric with a = 11.0 cm conducting spherical shell ofinner radius b = 20.0 cm, outer radius c = 30.0 cm andcharge Q2 = 2.0 nC as shown in the figure.If the center of the sphere is chosen as the origin of thecoordinate system, find the potential differenceV (x = a/2 , y = 0 , z = 0) − V (x = 0 , y = (b + c)/2 , z = 0)in units of Volts.Take 14πε0= 9.0 × 109 Nm2/C2.
Compute for the potential difference, in volts, in moving a charge radially away from the center from a distance of 6 m to a distance of 11 m against the electric field inside a non-conducting spherical shell of inner radius 1 m, outer radius 18 m, and total charge 6 nC.

Chapter 3 Solutions

Introduction to Electrodynamics

Ch. 3.2 - Two semi-infinite grounded conducting planes meet...Ch. 3.2 - Prob. 3.12PCh. 3.3 - Find the potential in the infinite slot of Ex. 3.3...Ch. 3.3 - Prob. 3.14PCh. 3.3 - A rectangular pipe, running parallel to the z-axis...Ch. 3.3 - A cubical box (sides of length a) consists of five...Ch. 3.3 - Prob. 3.17PCh. 3.3 - Prob. 3.18PCh. 3.3 - Prob. 3.19PCh. 3.3 - Suppose the potential V0() at the surface of a...Ch. 3.3 - Prob. 3.21PCh. 3.3 - In Prob. 2.25, you found the potential on the axis...Ch. 3.3 - Prob. 3.23PCh. 3.3 - Prob. 3.24PCh. 3.3 - Find the potential outside an infinitely long...Ch. 3.3 - Prob. 3.26PCh. 3.4 - A sphere of radius R, centered at the origin,...Ch. 3.4 - Prob. 3.28PCh. 3.4 - Four particles (one of charge q, one of charge 3q,...Ch. 3.4 - In Ex. 3.9, we derived the exact potential for a...Ch. 3.4 - Prob. 3.31PCh. 3.4 - Two point charges, 3qand q , arc separated by a...Ch. 3.4 - Prob. 3.33PCh. 3.4 - Three point charges are located as shown in Fig....Ch. 3.4 - A solid sphere, radius R, is centered at the...Ch. 3.4 - Prob. 3.36PCh. 3.4 - Prob. 3.37PCh. 3.4 - Here’s an alternative derivation of Eq. 3.10 (the...Ch. 3.4 - Prob. 3.39PCh. 3.4 - Two long straight wires, carrying opposite uniform...Ch. 3.4 - Prob. 3.41PCh. 3.4 - You can use the superposition principle to combine...Ch. 3.4 - A conducting sphere of radius a, at potential V0 ,...Ch. 3.4 - Prob. 3.44PCh. 3.4 - Prob. 3.45PCh. 3.4 - A thin insulating rod, running from z=a to z=+a ,...Ch. 3.4 - Prob. 3.47PCh. 3.4 - Prob. 3.48PCh. 3.4 - Prob. 3.49PCh. 3.4 - Prob. 3.50PCh. 3.4 - Prob. 3.51PCh. 3.4 - Prob. 3.52PCh. 3.4 - Prob. 3.53PCh. 3.4 - Prob. 3.54PCh. 3.4 - Prob. 3.55PCh. 3.4 - Prob. 3.56PCh. 3.4 - Prob. 3.57PCh. 3.4 - Find the charge density () on the surface of a...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY