Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Chapter 34, Problem 34.24P
(a)
To determine
To show: The electric field and magnetic field are perpendicular to each other.
(b)
To determine
The pointing vector for these fields.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
a long, straight copper wire (diameter 2.50 mm and resistance 1.00 ohm per 300 m) carries a uniform current of 25.0 A in the positive x direction. For point P on the wire’s surface, calculate the magnitudes of (a) the electric field , (b) the magnetic field , and (c) the Poynting vector , and (d) determine the direction of S.
Consider a straight cylindrical wire of radius a and length L and resistance R = L/ra*o,
where o is the electrical conductivity of the material. A steady and uniform current I
circulates through the wire.
(a) Calculate the electric field E at the interior of the wire.
(b) Calculate the magnetic field B at the interior of the wire.
(c) Calculate the poynting vector S at the interior of the wire.
(d) Prove that
|5. dā = -I²R s: exterior surface of the wire
An electromagnetic wave from a wire antenna travels (from the reader) toward the plane of the paper. At time t = 0.0 s it strikes the paper at normal incidence. At point O and t = 0.0 s, the magnetic field vector has its maximum value, 5.01×10-8 T, pointing in the negative y-direction. The frequency of this wave is 1.17×106 Hz.What is the magnitude of the Poynting vector of the wave at time t = 0.0 s?
Chapter 34 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 34 - Prob. 34.1QQCh. 34 - What is the phase difference between the...Ch. 34 - Prob. 34.3QQCh. 34 - Prob. 34.4QQCh. 34 - If the antenna in Figure 33.11 represents the...Ch. 34 - Prob. 34.6QQCh. 34 - A radio wave of frequency on the order of 105 Hz...Ch. 34 - A spherical interplanetary grain of dust of radius...Ch. 34 - Prob. 34.2OQCh. 34 - A typical microwave oven operates at a frequency...
Ch. 34 - Prob. 34.4OQCh. 34 - Prob. 34.5OQCh. 34 - Which of the following statements are true...Ch. 34 - Prob. 34.7OQCh. 34 - Prob. 34.8OQCh. 34 - An electromagnetic wave with a peak magnetic field...Ch. 34 - Prob. 34.10OQCh. 34 - Prob. 34.11OQCh. 34 - suppose a creature from another planet has eyes...Ch. 34 - Prob. 34.2CQCh. 34 - Prob. 34.3CQCh. 34 - List at least three differences between sound...Ch. 34 - If a high-frequency current exists in a solenoid...Ch. 34 - Prob. 34.6CQCh. 34 - Prob. 34.7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 34.9CQCh. 34 - What does a radio wave do to the charges in the...Ch. 34 - Prob. 34.11CQCh. 34 - An empty plastic or glass dish being removed from...Ch. 34 - Prob. 34.13CQCh. 34 - Prob. 34.1PCh. 34 - Prob. 34.2PCh. 34 - Prob. 34.3PCh. 34 - An election moves through a uniform electric field...Ch. 34 - A proton moves through a region containing a...Ch. 34 - Prob. 34.6PCh. 34 - Suppose you are located 180 in from a radio...Ch. 34 - A diathermy machine, used in physiotherapy,...Ch. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 34.10PCh. 34 - Review. A standing-wave pattern is set up by radio...Ch. 34 - Prob. 34.12PCh. 34 - The speed of an electromagnetic wave traveling in...Ch. 34 - A radar pulse returns to the transmitterreceiver...Ch. 34 - Figure P34.15 shows a plane electromagnetic...Ch. 34 - Verify by substitution that the following...Ch. 34 - Review. A microwave oven is powered by a...Ch. 34 - Why is the following situation impossible? An...Ch. 34 - ln SI units, the electric field in an...Ch. 34 - At what distance from the Sun is the intensity of...Ch. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 34.22PCh. 34 - A community plans to build a facility to convert...Ch. 34 - Prob. 34.24PCh. 34 - Prob. 34.25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - High-power lasers in factories are used to cut...Ch. 34 - Consider a bright star in our night sky. Assume...Ch. 34 - What is the average magnitude of the Poynting...Ch. 34 - Prob. 34.30PCh. 34 - Review. An AM radio station broadcasts...Ch. 34 - Prob. 34.32PCh. 34 - Prob. 34.33PCh. 34 - Prob. 34.34PCh. 34 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 34 - A radio wave transmits 25.0 W/m2 of power per unit...Ch. 34 - Prob. 34.37PCh. 34 - Prob. 34.38PCh. 34 - A uniform circular disk of mass m = 24.0 g and...Ch. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 34.41PCh. 34 - Assume the intensity of solar radiation incident...Ch. 34 - A possible means of space flight is to place a...Ch. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - A Marconi antenna, used by most AM radio stations,...Ch. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 34.47PCh. 34 - Prob. 34.48PCh. 34 - Two vertical radio-transmitting antennas are...Ch. 34 - Prob. 34.50PCh. 34 - What are the wavelengths of electromagnetic waves...Ch. 34 - An important news announcement is transmitted by...Ch. 34 - In addition to cable and satellite broadcasts,...Ch. 34 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 34 - Assume the intensity of solar radiation incident...Ch. 34 - In 1965, Arno Penzias and Robert Wilson discovered...Ch. 34 - The eye is most sensitive to light having a...Ch. 34 - Prob. 34.58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - A microwave source produces pulses of 20.0GHz...Ch. 34 - The intensity of solar radiation at the top of the...Ch. 34 - Prob. 34.62APCh. 34 - Consider a small, spherical particle of radius r...Ch. 34 - Consider a small, spherical particle of radius r...Ch. 34 - A dish antenna having a diameter of 20.0 m...Ch. 34 - The Earth reflects approximately 38.0% of the...Ch. 34 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 34 - Prob. 34.68APCh. 34 - Prob. 34.69APCh. 34 - You may wish to review Sections 16.4 and 16.8 on...Ch. 34 - Prob. 34.71APCh. 34 - Prob. 34.72APCh. 34 - Prob. 34.73APCh. 34 - Prob. 34.74APCh. 34 - Prob. 34.75APCh. 34 - Prob. 34.76CPCh. 34 - A linearly polarized microwave of wavelength 1.50...Ch. 34 - Prob. 34.78CPCh. 34 - Prob. 34.79CP
Knowledge Booster
Similar questions
- A plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points eastward. What are the magnitude and direction of the magnetic field at this instant?arrow_forwardThe electric field of an electromagnetic wave traveling in vacuum is described by the following wave function: E =(5.00V/m)cos[kx(6.00109s1)t+0.40] j where k is the wavenumber in rad/m, x is in m, t s in Find the following quantities: (a) amplitude (b) frequency (c) wavelength (d) the direction of the travel of the wave (e) the associated magnetic field wavearrow_forwardWhat is the physical significance of the Poynting vector?arrow_forward
- Consider an electromagnetic wave traveling in the positive y direction. The magnetic field associated with the wave at some location at some instant points in the negative x direction as shown in Figure OQ24.12. What is the direction of the electric field at this position and at this instant? (a) the positive x direction (b) the positive y direction (c) the positive z direction (d) the negative z direction (e) the negative y direction Figure OQ24.12arrow_forwardFigure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardThe electric part of an electromagnetic wave is given by E(x, t) = 0.75 sin (0.30x t) V/m in SI units. a. What are the amplitudes Emax and Bmax? b. What are the angular wave number and the wavelength? c. What is the propagation velocity? d. What are the angular frequency, frequency, and period?arrow_forward
- The Poynting vector describes a flow of energy whenever electric and magnetic fields are present. Consider a long cylindrical wire of radius r with a current I in the wire, with resistance R and voltage V. From the expressions for the electric field along the wire and the magnetic field around the wire, obtain the magnitude and direction of the Poynting vector at the surface. Show that it accounts for an energy flow into the wire from the fields around it that accounts for the Ohmic heating of the wire.arrow_forwardThe magnetic field of a plane electromagnetic wave moving along the z axis is given by B =B0(coskz+t) j , where B0=5.001010 and k=3.10102m-1 . (a) Write an expression for the electric field associated with the wave. (b) What are the frequency and the wavelength of the wave? (C) What is its average Poynting vector?arrow_forwardYou are working at NASA, in a division that is studying the possibility of rotating small spacecraft using radiation pressure from the Sun. You have built a scale model of a spacecraft as shown in Figure P33.47. The central body is a spherical shell with mass m = 0.500 kg and radius R = 15.0 cm. The thin rod extending from each side of the sphere is of mass mr = 50.0 g and of total length = 1.00 m. At each end of the rod arc circular plates of mass mp = 10.0 g and radius rp = 2.00 cm, with the center of each plate located at the end of the rod. One plate is perfectly reflecting and the other is perfectly absorbing. The initial configuration of this model is that it is at rest, mounted on a vertical axle with very low friction. To begin the simulation, you expose the model to sunlight of intensity Is = 1 000 W/m2, directed perpendicularly to the plates, for a time interval of t = 2.0 min. The sunlight is then removed from the model. Determine the angular velocity with which the model now rotates about the axle. Figure P33.47arrow_forward
- What is the average magnitude of the Poynting vector 5.00 mi from a radio transmitter broadcasting isotropically (equally in all directions) with an average power of 250 kW?arrow_forwardIn a region of space, the electric field is pointed along the x-axis, but its magnitude changes as described by Ex=(10N/C)sin(20x500t)Ey=Ez=0 where t is in nanoseconds and x is in cm. Find the displacement current through a circle of radius 3 cm in the x = 0 plane at I = 0.arrow_forwardWhen an electric current flows through the filament of an incandescent light bulb, it gets very hot and glows (or incandesces). Consider a particular bulb with a filament with 140 Ω resistance which carries a current of 1.00 A. Assume the length of the filament is L = 9.00 cm long with a radius of r = 0.900 mm. (a) Calculate the Poynting vector (in kW/m2) at the surface of the filament, associated with the static electric field producing the current and the current's static magnetic field. magnitude: ? kW/m2 direction: Radially inward or outward? (b) Find the magnitudes of the static electric field (in kV/m) and static magnetic field (in µT) at the surface of the filament. electric field: ? kV/m magnetic field: ? µTarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning