Concept explainers
The angular spread of visible light passing through a prism.
Answer to Problem 25P
Explanation of Solution
Given Info:
Explanation:
Write the expression for snell’s law for prism to calculate angle of refraction for red light.
Here,
Substitute
Write the expression for snell’s law,
Here,
Substitute
Write the expression for snell’s law for prism to calculate angle of refraction for violet light.
Here,
Substitute
Write the expression for Snell's law.
Here,
Substitute
Write the expression for angular spread of visible light,
Here,
Substitute
Conclusion:
Therefore, the angular spread of visible light passing through a prism is
Want to see more full solutions like this?
Chapter 34 Solutions
Physics for Scientists and Engineers
- Light is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardFigure P23.28 shows a curved surface separating a material with index of refraction n1 from a material with index n2. The surface forms an image I of object O. The ray shown in red passes through the surface along a radial line. Its angles of incidence and refraction are both zero, so its direction does not change at the surface. For the ray shown in blue, the direction changes according to n1 sin 1 = n2 sin 2. For paraxial rays, we assume 1 and 2 are small, so we may write n1 tan 1 n2 tan 2. The magnification is defined as M = h/h. Prove that the magnification is given by M = n1q/n2p. Figure P23.28arrow_forwardA green laser beam travels through the an L-shaped block of transparent blue plastic with an angle 00 = 38. above the x axis. The index of refraction of the blue plastic is nb = 1.90. The beam passes into a rectangular block of transparent yellow plastic, and the refracted ray then has an angle of Oy = 43., as shown in the figure below. %3D a. What is the speed of the laser beam as it travels through the blue plastic? b. What is the index of refraction ny of the yellow plastic? c. When the refracted laser beam reaches the other edge of the yellow plastic, it is refracted again as it re-enters the blue plastic. What is the final direction Of of the beam above the x axis?arrow_forward
- The angle of a prism is A°. One of its refracting surfaces is silvered. Light rays falling at an angle of incidence 24 on the first surface returns back through the same path after suffering reflection at the silvered surface. The refractive index u , of the prism is : a. 2 cos A 1 b. cos A c. tan A d. 2 sin Aarrow_forwardThe bottom of a glass bottom boat allows tourists to see the coral reefs in Australia. The indices of refraction are as follows: air(n=1), glass(n=1.55), water(n=1.330).If a light ray coming from above hits the glass at an angle of 60.0deg to the normal, what is the refracted angle (deg) inside the water?arrow_forwardWhich of the following statements are (or could be) true? Choose all that apply. A rock at a temperature of 49 K will not emit EM waves. The index of refraction of a newly discovered transparent material is -1.1. In a vacuum, x-rays move slower than UV rays. Total internal reflection will not occur if the critical angle is greater than the incident angle. A light ray was reflected. The incident angle was 65° and the reflected angle was 65º. If do, then d₁ = 0.arrow_forward
- Measuring n Using a Prism Although we do not prove it here, the minimum angle of deviation &min for a prism occurs when the angle of incidence 0, is such that the refracted ray inside the prism makes the same angle with the normal to the two prism faces as shown in the figure. Obtain an expression for the index of refraction of the prism material in terms of the minimum angle of deviation and the apex angle 0. Ф 2k8min A light ray passing through a prism at the minimum angle of deviation 6min: SOLUTION Conceptualize Study the figure carefully and be sure you understand why the light ray comes out of the prism traveling in a different direction. Categorize In this example, light enters a material through one surface and leaves the material at another surface. Let's apply the wave under refraction v model to the light passing through the prism. Analyze Ф Consider the geometry in the figure, where we have used symmetry to label several angles. The reproduction of the angle at 2 the…arrow_forwardA beam of light (wavelength of 600 nm) is traveling in air and strikes transparent material. The incident beam makes an angle of 40° with the normal, and the refracted beam make an angle of 20⁰ with the normal. What is the wavelength of light in the transparent material? Jhay O 102.6 nm O 200 nm 350 nm O 705.6 nm O 319.3 nmarrow_forwardConsider a ray incident on an interface between air (n = 1) and glass (n = 1.5) at a 50◦angle, as shown in the figure below. The glass substrate is 1 cm thick. What is the distance d between the light ray exiting the substrate and the unaffected ray?arrow_forward
- A laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin. In a neat and organized fashion, write out a solution which includes the following: A sketch of the physical situation with all given physical quantities clearly labeled. Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled. Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that. Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…arrow_forwardA laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin. In a neat and organized fashion, write out a solution which includes the following: A sketch of the physical situation with all given physical quantities clearly labeled. Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled. Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that. Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…arrow_forwardWhite light enters flint glass from air (n₁ = 1). The angle of incidence is 8, = 63 degrees. Due to dispersion in the glass, the index of refraction for red light is 1.662, while the index for violet light is 1.698. Due to this difference, the violet and red parts of white light are refracted by different amounts. What is the difference in refraction angle (AO) between violet and red fin this situation? A0 = degrees n₁ n₂ refracted raysarrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning