Concept explainers
Launching a rocket
When a model rocket is launched, the propellant burns for a few seconds, accelerating the rocket upward. After burnout, the rocket coasts upward for a while and then begins to fall. A small explosive charge pops out a parachute shortly after the rocket starts down. The parachute slows the rocket to keep it from breaking when it lands.
The figure here shows velocity data from the flight of the model rocket. Use the data to answer the following.
How fast was the rocket climbing when the engine stopped?
For how many seconds did the engine burn?
When did the rocket reach its highest point? What was its velocity then?
When did the parachute pop out? How fast was the rocket falling then?
How long did the rocket fall before the parachute opened?
When was the rocket’s acceleration greatest?
When was the acceleration constant? What was its value then(to the nearest integer)?
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
University Calculus
- Force If you have ever ridden on a chair lift at a ski area and had it stop, you know that the chair will pull down on the cable, dropping you down to a lower height than when the chair is in motion. Figure 19 shows a gondola that is stopped. Find the magnitude of the tension in the cable toward each end of the cable if the total weight of the gondola and its occupants is 1,850 pounds.arrow_forwardThe length a spring stretches varies directly with a weight placed at the end of the spring. When Meredith placed a 6-pound cantaloupe on a hanging scale, the spring stretched 2 inches. How far would the spring stretch if the cantaloupe weighed 9 pounds?arrow_forwardUse a calculator to help solve each problem. Oceanography At one location in the Atlantic Ocean, I0=14 lumens and k=0.7. Find the intensity of light at a depth of 12 meters. See Exercise 11.arrow_forward
- The population P (in millions) of Texas from 2001 through 2014 can be approximated by the model P=20.913e0.0184t, where t represents the year, with t=1 corresponding to 2001. According to this model, when will the population reach 32 million?arrow_forwardRipples in a pond When a stone is thrown into the center of a pond, the ripples spread out in a circular pattern, moving at a rate of 3 feet per second. If the stone is dropped at a point (0,0) in the illustration, when will the ripple reach the seagull floating at the point (15,36)?arrow_forwardA bottle of soda with a temperature of 71 Fahrenheit was taken off a shelf and placed ina refrigerator with an internal temperature of 35 .After ten minutes, the internal temperature of thesoda was 63F . Use Newton’s Law of cooling towrite a formula that models this situation. To thenearest degree, what will the temperature of thesoda be after one hour?arrow_forward
- Find the intensity of light at a depth of 12 meter if I0=14 and k=0.7. Round to two decimals.arrow_forwardDefine Newton’s Law of Cooling. Then name at least three real-world situations where Newton’s Law of Cooling would be applied.arrow_forwardSound Location Two microphones, 2 miles apart, record an explosion. Microphone A receives the sound 6 seconds before microphone B. Where did the explosion occur? (Assume sound travels at 1100 feet per second.)arrow_forward
- Solve each problem. w is directly proportional to z. If w=-6 when z=2, find w when z=-3.arrow_forwardStock Turnover at Retail In retail sales, an important marker of retail activity is the stock turnover at retail. This figure is calculated for a specific period of time as the total net sales divided by the retail value of the average stock during that time, where both are measured in dollars. As a formula, this is written Stockturnover=NetsalesAveragestockatretail. This formula expresses stock turnover as a function of net sales and average stock at retail. a. Suppose that your store had net sales of 682, 000 in mens shoes over the past six months and that the retail value of the average stock of mens shoes was 163, 000. What was the stock turnover at retail for that time period? b. Suppose that in a certain month, your stores net sales of womens dresses were 83, 000 and that the usual stock turnover at retail is 0.8 per month. What do you estimate to be your stores average stock at retail? c. Solve the equation for average stock at retail- that is, write a formula giving average stock at retail as a function of stock turnover and net sales. d. Suppose that in a certain time period, your store had an average stock of socks with a retail value of 45, 000 and a stock turnover at retail of 1.6. What were the stores net sales of socks during that time period? e. Solve the equation for net sales- that is, write a formula giving net sales as a function of stock turnover and average stock at retail.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning