![Essential University Physics (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134202709/9780134202709_largeCoverImage.gif)
Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 35P
Two distant galaxies are receding from Earth at 0.75c in opposite directions. How fast does an observer in one galaxy measure the other to be moving?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
need help on first part
its not 220
No chatgpt pls will upvote
No chatgpt pls
Chapter 33 Solutions
Essential University Physics (3rd Edition)
Ch. 33.2 - Prob. 33.1GICh. 33.4 - Triplets A and B board spaceships and head away...Ch. 33.5 - A comet plunges into the planet Jupiter. At the...Ch. 33.7 - The rest energy of a proton is 938 MeV. Without...Ch. 33 - Why was the Michelson-Morley experiment a more...Ch. 33 - Why was it necessary to repeat the...Ch. 33 - Prob. 3FTDCh. 33 - Does relativity require that the speed of sound be...Ch. 33 - Time dilation is sometimes described by saying...Ch. 33 - If youre in a spaceship moving at 0.95c relative...
Ch. 33 - The Andromeda Galaxy is 2 million light years from...Ch. 33 - Prob. 8FTDCh. 33 - Prob. 9FTDCh. 33 - The rest energy of an electron is 511 keV. Whats...Ch. 33 - An atom in an excited state emits a burst of...Ch. 33 - The quantity EB is invariant. What does this say...Ch. 33 - An airplane makes a round trip between two points...Ch. 33 - Consider a Michelson-Morley experiment with 11-m...Ch. 33 - Two stars are 50 ly apart, measured in their...Ch. 33 - How long would it take a spacecraft traveling at...Ch. 33 - A spaceship passes by you at half the speed of...Ch. 33 - An extraterrestrial spacecraft whizzes through the...Ch. 33 - How fast would you have to move relative to a...Ch. 33 - A hospitals linear accelerator produces electron...Ch. 33 - Prob. 21ECh. 33 - At what speed will the momentum of a proton (mass...Ch. 33 - Prob. 23ECh. 33 - A particle is moving at 0.90c. If its speed...Ch. 33 - Find (a) the total energy and (b) the kinetic...Ch. 33 - At what speed will the relativistic and Newtonian...Ch. 33 - Show that the time of Equation 33.2 is longer than...Ch. 33 - Youre designing a Michelson interferometer in...Ch. 33 - Earth and Sun are 8.3 light minutes apart, as...Ch. 33 - Youre the communications officer on a fast...Ch. 33 - You wish to travel to a star N light years from...Ch. 33 - The nearest star beyond our solar system is about...Ch. 33 - Twins A and B live on Earth. On their 20th...Ch. 33 - Radioactive oxygen-15 decays at such a rate that...Ch. 33 - Two distant galaxies are receding from Earth at...Ch. 33 - Two spaceships are racing. The slower one passes...Ch. 33 - Use relativistic velocity addition to show that if...Ch. 33 - Earth and Sun arc 8.33 light minutes apart. Event...Ch. 33 - Youre writing a galactic history involving two...Ch. 33 - Repeat Problem 39, now assuming that civilization...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - The Curiosity rover touched down on Mars when...Ch. 33 - Derive the Lorentz transformations for time from...Ch. 33 - In the light box of Fig. 33.6, let event A be the...Ch. 33 - Youre a consultant for the director of a sci-fi...Ch. 33 - How fast would you have to go to reach a star 240...Ch. 33 - An advanced civilization has developed a spaceship...Ch. 33 - A spaceship travels at 0.80c from Earth to a star...Ch. 33 - Use Equation 33.6 to calculate the square of the...Ch. 33 - A light beam is emitted at event A and arrives at...Ch. 33 - Compare the momentum changes needed to boost a...Ch. 33 - Event A occurs at x = 0 and t = 0 in reference...Ch. 33 - When a particle's speed doubles, its momentum...Ch. 33 - Find (a) the speed and (b) the momentum of a...Ch. 33 - Prob. 56PCh. 33 - A large city consumes electrical energy at the...Ch. 33 - In a nuclear-fusion reaction, two deuterium nuclei...Ch. 33 - Find the kinetic energy of an electron moving at...Ch. 33 - Find the speed of an electron with kinetic energy...Ch. 33 - Use the binomial approximation (Appendix A) to...Ch. 33 - Prob. 62PCh. 33 - Show from the Lorentz transformations that the...Ch. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - The highest-energy cosmic rays ever detected are...Ch. 33 - When an objects speed increases by 5%, its...Ch. 33 - Use the Lorentz transformations to show that if...Ch. 33 - A source emitting light with frequency f moves...Ch. 33 - Equation 33.5a transforms the velocity u of an...Ch. 33 - Consider a relativistic particle of mass m moving...Ch. 33 - Find the speed of a particle whose relativistic...Ch. 33 - Its the 24th century, and you're a curator at the...Ch. 33 - Consider a line of positive charge with line...Ch. 33 - Prob. 75PCh. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Give at least three examples of key ecosystem services that nature provides for people.
Campbell Biology (11th Edition)
The genes dumpy (dp), clot (cl), and apterous (ap) are linked on chromosome II of Drosophila. In a series of tw...
Concepts of Genetics (12th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
In cats, tortoiseshell coat color appears in females. A tortoiseshell coat has patches of dark brown fur and pa...
Genetic Analysis: An Integrated Approach (3rd Edition)
Draw the enol tautomers for each of the following compounds. For compounds that have more than one enol tautome...
Organic Chemistry (8th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Children playing in a playground on the flat roof of a city school lose their ball to the parking lot below. One of the teachers kicks the ball back up to the children as shown in the figure below. The playground is 6.10 m above the parking lot, and the school building's vertical wall is h = 7.40 m high, forming a 1.30 m high railing around the playground. The ball is launched at an angle of 8 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Find the speed (in m/s) at which the ball was launched. 18.1 m/s (b) Find the vertical distance (in m) by which the ball clears the wall. 0.73 ✓ m (c) Find the horizontal distance (in m) from the wall to the point on the roof where the ball lands. 2.68 m (d) What If? If the teacher always launches the ball…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at x = d = 0.0100 m. (a) the position of the electron y, = 2.60e1014 m (b) the…arrow_forwardNo chatgpt plsarrow_forward
- need help with the first partarrow_forwardA ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forward
- A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forward
- How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY