University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 33.18E
A beam of light is traveling inside a solid glass cube that has index of refraction 1.62. It strikes the surface of the cube from the inside. (a) If the cube is in air, at what minimum angle with the normal inside the glass will this light not enter the air at this surface? (b) What would be the minimum angle in part (a) if the cube were immersed in water?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of light is traveling inside a solid glass cube that has index of refraction 1.62. It strikes the surface of the cube from the inside. (a) If the cube is in air, at what minimum angle with the normal inside the glass will this light not enter the air at this surface? (b) What would be the minimum angle in part (a) if the cube were immersed in water?
A parallel sided plate of glass with an index of refraction of 1.60 is in contact with the surface
of water (n=1.33) in a tank. A ray coming from above makes an angle of incidence of 30.0°
with the normal to the top surface of the glass plate. (a) What is the speed of light in the glass
plate? (b) What is the critical angle between the glass and the water? (c) What angle does
this ray make with the normal in the water? (d) Include a diagram of the situation.
[Diagram 3 pts.]
A flat piece of glass covers the top of a vertical cylinder that is completely filled with water. If a ray of light traveling in the glass is incident on the interface with the water at an angle of θa = 36.2°, the ray refracted into the water makes an angle of 49.8o with the normal to the interface. What is the smallest value of the incident angle ua for which none of the ray refracts into the water?
Chapter 33 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
What two components contribute to species diversity? Explain how two communities with the same number of specie...
Campbell Biology (11th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
12. Which of the following experiments could test the hypothesis that bacteria cause ulcers in humans? (Assume ...
Campbell Biology: Concepts & Connections (9th Edition)
26. A hockey puck sliding along frictionless ice with speed v to the right collides with a horizontal spring an...
College Physics: A Strategic Approach (3rd Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardLight travels from air into an optical fiber with an index of refraction of 1.44. (a) If the angle of incidence on the end of the fiber is 22 degree, what is the angle of refraction inside the fiber? (b) Light traveling through an optical fiber (n=1.44) reaches the end of the fiber and exits into air. (a) If the angle of incidence on the end of the fiber is 30 degree, what is the angle of refraction outside the fiber? (c) Calculate the critical angle of optical fiber and air interfacearrow_forward
- The angle of incidence of a light beam in air onto a reflecting surface is continuously variable. The reflected ray is found to be completely polarized when the angle of incidence is 63.0°. (a) What is the index of refraction of the reflecting material? (b) If some of the incident light (at an angle of 63.0°) passes into the material below the surface, what is the angle of refraction? answer in degrees °arrow_forward(a) The index of refraction for violet light in silica flint glass is 1.66, and that for red light is 1.62. What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 54.0°? (b) What If? What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 90°?arrow_forward(a)Light passes from glass with index of refraction 1.58 into water with index of refraction 1.33. The angle of the refractedray in water is 58.0°.Calculate the angle of the incident ray at the glass-water interface. (b) A ray passing from air to cyclohexane is incident at 48° and has an angle of refraction of 31°. Calculate the index of refraction of the cyclohexane. (c) Draw pictures of each situation showing the interface between the media, the normal line, the incident, reflected, and refracted rays, and the angles of these ray relative to the normal line.arrow_forward
- In Figure (a), a beam of light in material 1 is incident on a boundary at an angle of 28° The extent to which the light is bent due to refraction depends, in part, on the index of refraction n2 of material 2. Figure (b) gives the angle of refraction 02 versus n2 for a range of possible n2 values, from n, = 1.36 to n, = 1.94. What is the speed of light in material 1? 38° 28 28 18 na (a) (b) Number i ! Units m/sarrow_forwardA beam of light is propagating through a diamond (n1= 2.42) and strikes a diamond- air interface at an angle of incidence of 30°. (a) Will part of the beam enter the air (n2 = 1.00) or will the beam be totally reflected at the interface? (b) Repeat part (a), assuming that the diamond is surrounded by water (n2= 1.33) instead of air.arrow_forwardIn Figure (a), a beam of light in material 1 is incident on a boundary at an angle of 28°. The extent to which the light is bent due to refraction depends, in part, on the index of refraction n2 of material 2. Figure (b) gives the angle of refraction 02 versus n2 for a range of possible n2 values, from na = 1.40 to np = 1.97. What is the speed of light in material 1? 38 28 28° 18° (a) (b) Number Units the tolerance is +/-5%arrow_forward
- A piece of glass has an index of refraction of 1.5 and is submerged in water with n=1.33. A beam of monochrome light is incident on the glass and is refracted. (a) Find the angle of refraction if the angle of incidence is 32⁰. (b) Now, assume that the light is initially in the glass and incident on the glass-water surface. What is the refraction of light?arrow_forwardA beam of light in air is incident at an angle of 30 degrees to the surface of a rectangular block of clear plastic (n = 1.46). The light beam first passes through the block and re-emerges from the opposite side into air at what angle to the normal to that surface?arrow_forwardAn aquarium filled with water has flat glass sides whose index of refraction is 1.54. A beam of light from outside the aquarium strikes the glass at a 43.5° angle to the perpendicular. What is the angle of this light ray when it enters (a) the glass, and then (b) the water? (c) What would be the refracted angle if the ray entered the water directly?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY