Linear Algebra and Its Applications (5th Edition)
5th Edition
ISBN: 9780321982384
Author: David C. Lay, Steven R. Lay, Judi J. McDonald
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.3, Problem 25E
Use the concept of volume to explain why the determinant of a 3 × 3 matrix A is zero if and only if A is not invertible. Do not appeal to Theorem 4 in Section 3.2. [Hint: Think about the columns of A.]
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:26
Students have asked these similar questions
2
Use grouping to factor: 10x² + 13x + 3 = 0
Identify A, B, and C in the chart below. (each re
2
Use grouping to factor: 10x + 13x + 3 = 0
Identify A B and C in the chart below feach responce in
Use grouping to fully factor: x³ + 3x² - 16x - 48 = 0
3
2
Chapter 3 Solutions
Linear Algebra and Its Applications (5th Edition)
Ch. 3.1 - Compute |5722030458030506|.Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 914 by a...
Ch. 3.1 - Compute the determinants in Exercises 914 by a...Ch. 3.1 - Compute the determinants in Exercises 914 by a...Ch. 3.1 - Compute the determinants in Exercises 914 by...Ch. 3.1 - Compute the determinants in Exercises 914 by...Ch. 3.1 - Compute the determinants in Exercises 914 by...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Use Exercises 2528 to answer the questions in...Ch. 3.1 - Use Exercises 2528 to answer the questions in...Ch. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - Let A = [3142] Write 5A. Is det 5A = 5 det A?Ch. 3.1 - Let .A = [abcd] and let k be a scalar. Find a...Ch. 3.1 - In Exercises 39 and 40, A is an n n matrix. Mark...Ch. 3.1 - a. The cofactor expansion of det A down a column...Ch. 3.1 - Let u = [30] and v = [12]. Compute the area of the...Ch. 3.1 - Let u = [ab] and v = [c0], where a, b, and c are...Ch. 3.2 - PRACTICE PROBLEMS 1. Compute |13122512045131068|...Ch. 3.2 - Use a determinant to decide if v1, v2, and v3 are...Ch. 3.2 - Let A be an n n matrix such that A2 = I. Show...Ch. 3.2 - Each equation in Exercises 14 illustrates a...Ch. 3.2 - Each equation in Exercises 14 illustrates a...Ch. 3.2 - Each equation in Exercises 14 illustrates a...Ch. 3.2 - Each equation in Exercises 14 illustrates a...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Find the determinants in Exercises 1520, where 15....Ch. 3.2 - Find the determinants in Exercises 1520, where 16....Ch. 3.2 - Find the determinants in Exercises 1520, where...Ch. 3.2 - Find the determinants in Exercises 1520, where...Ch. 3.2 - Find the determinants in Exercises 1520, where...Ch. 3.2 - Find the determinants in Exercises 1520, where...Ch. 3.2 - In Exercises 2123, use determinants to find out if...Ch. 3.2 - In Exercises 2123, use determinants to find out if...Ch. 3.2 - In Exercises 2123, use determinants to find out if...Ch. 3.2 - In Exercises 2426, use determinants to decide if...Ch. 3.2 - In Exercises 2426, use determinants to decide if...Ch. 3.2 - In Exercises 2426, use determinants to decide if...Ch. 3.2 - In Exercises 27 and 28, A and B are n n matrices....Ch. 3.2 - a. If three row interchanges are made in...Ch. 3.2 - Compute det B4 where B = [101112121]Ch. 3.2 - Use Theorem 3 (but not Theorem 4) to show that if...Ch. 3.2 - Show that if A is invertible, then detA1=1detA.Ch. 3.2 - Suppose that A is a square matrix such that det A3...Ch. 3.2 - Let A and B be square matrices. Show that even...Ch. 3.2 - Let A and P be square matrices, with P invertible....Ch. 3.2 - Let U be a square matrix such that UTU = 1. Show...Ch. 3.2 - Find a formula for det(rA) when A is an n n...Ch. 3.2 - Verify that det AB = (det A)(det B) for the...Ch. 3.2 - Verify that det AB = (det A)(det B) for the...Ch. 3.2 - Let A and B be 3 3 matrices, with det A = 3 and...Ch. 3.2 - Let A and B be 4 4 matrices, with det A = 3 and...Ch. 3.2 - Prob. 41ECh. 3.2 - Let A = [1001] and B = [abcd]. Show that det(A +...Ch. 3.2 - Verify that det A = det B + det C, where A =...Ch. 3.2 - Right-multiplication by an elementary matrix E...Ch. 3.3 - Let S be the parallelogram determined by the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - Show that if A is 2 2, then Theorem 8 gives the...Ch. 3.3 - Suppose that all the entries in A are integers and...Ch. 3.3 - In Exercises 1922, find the area of the...Ch. 3.3 - In Exercises 1922, find the area of the...Ch. 3.3 - In Exercises 1922, find the area of the...Ch. 3.3 - In Exercises 19-22, find the area of the...Ch. 3.3 - Find the volume of the parallelepiped with one...Ch. 3.3 - Find the volume of the parallelepiped with one...Ch. 3.3 - Use the concept of volume to explain why the...Ch. 3.3 - Let T : m n be a linear transformation, and let p...Ch. 3.3 - Let S be the parallelogram determined by the...Ch. 3.3 - Repeat Exercise 27 with b1=[47], b2=[01], and...Ch. 3.3 - Find a formula for the area of the triangle whose...Ch. 3.3 - Let R be the triangle with vertices at (x1, y1),...Ch. 3.3 - Let T: 3 3 be the linear transformation...Ch. 3.3 - Let S be the tetrahedron in 3 with vertices at the...Ch. 3 - Mark each statement True or False. Justify each...Ch. 3 - Use row operations to show that the determinants...Ch. 3 - Use row operations to show that the determinants...Ch. 3 - Prob. 4SECh. 3 - Compute the determinants in Exercises 5 and 6. 5....Ch. 3 - Compute the determinants in Exercises 5 and 6. 6....Ch. 3 - Show that the equation of the line in 2 through...Ch. 3 - Prob. 8SECh. 3 - Exercise 9 and 10 concern determinants of the...Ch. 3 - Let f(t) = det V, with x1, x2, and x3 all...Ch. 3 - Find the area of the parallelogram determined by...Ch. 3 - Use the concept of area of a parallelogram to...Ch. 3 - Prob. 13SECh. 3 - Let A,B,C,D, and I be n n matrices. Use the...Ch. 3 - Let A, B, C, and D be n n matrices with A...Ch. 3 - Let J be the n n matrix of all 1s, and consider A...Ch. 3 - Prob. 17SE
Additional Math Textbook Solutions
Find more solutions based on key concepts
Continuity and limits with transcendental functions Determine the interval(s) on which the following functions ...
Calculus: Early Transcendentals (2nd Edition)
CHECK POINT I You deposit $1000 in a saving account at a bank that has a rate of 4%. a. Find the amount, A, of ...
Thinking Mathematically (6th Edition)
Explain the meaning of the term “statistically significant difference” in statistics terminology.
Intro Stats, Books a la Carte Edition (5th Edition)
4. You construct a 95% confidence interval for a population mean using a random sample. The confidence interval...
Elementary Statistics: Picturing the World (7th Edition)
The four flaws in the given survey.
Elementary Statistics
Here is the region of integration of the integral
Rewrite the integral as an equivalent iterated integral in ...
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Name: Tay Jones Level Two Date: Algebra 3 Unit 3: Functions and Equations Practice Assessment Class: #7-OneNote 1. The function f(x) = x² is transformed in the following functions. List the vertex for each function, circle whether the function opens up or down, and why. All three parts must be correct to receive Level 2 points. You can receive points for a, b, and c. a) g(x) = -2(x+5)² Vertex: Opens Up Opens Down Why? ais negative -2 Vertex: b) g(x) = (x + 2)² - 3 c) g(x) = -4(x + 2)² + 2 Opens Up Opens Down Vertex: Opens Up Opens Down Why? 4 Ca is negative) Why? his positive 2. The graph of the function f(x) is shown below. Find the domain, range, and end behavior. Then list the values of x for which the function values are increasing and decreasing. f(x) Domain: End Behavior: As x → ∞o, f(x) -> -6 As x, f(x) -> Range: Where is it Increasing? (002] Where is it Decreasing? (1,00)arrow_forwardShow what to do on the graph visually please!arrow_forwardThe county's new asphalt paving machine can surface 1 km of highway in 10 h. A much older machine can surface 1 km in 18 h. How long will it take them to surface 21 km of highway if they start at opposite ends and work day and night?arrow_forward
- 3. Write a system of linear equations in slope intercept form that has exactly one solution at the point (3, 4), such that one line has positive slope (but not 1) and the other line has negative slope (but not "1). Also write your system of equations with both equations written in standard form with out any fractions 8- 7 8 5 4 3 -2- + -8-7-6-5-4-3-2-1 1 2 3 -1 2 - ° 4 -5 - -8arrow_forward2. Write a system of linear equations in slope-intercept form has exactly one solution at the point (3, 4), such that both lines have negative slope (but neither one has slope of 1). Also write your system of equations with both equations written in standard form without any fractions. B 0 5 4 3 -2 1 -8-7-6-5-4-3-2 -1 12 3 -1 2 -3 -5 6 -7 -8arrow_forward4. Write a system of linear equations in slope-intercept form that has no solution, such that (3, 4), and (3,8) are solutions to the first equation, and (0, 4) is a solution to the second equation. Also write your system of equations with both equations written in standard form with out any fractions B 0 5 4 3 -2 + -8-7-6-5-4-3-2 -1 |- 1 2 3 -1 2 -3 4 -5 6 -7arrow_forward
- Show how you can solve the system of equations by manipulating the algebra tiles while maintaining the balances. On this side of the page, use the addition (elimination) method. Keep track of what you did at each step by writing down the corresponding equivalent equations, as well as what you did to go from one equation to the next. 1. x + 2y = 5 x-2y=1 2. 2x+y=2 x-2y= 6arrow_forwarde) x24 1) Which of these are equivalent to x³? For each expression that is equivalent to x², prove it by using the definition of exponents. For each that is not equivalent to x³, give an example using a specific value for x that shows that it represents a different number. a) (x5) d) f) 10-2 b) (x²) *|*arrow_forwardNow show how you can solve the system of equations by manipulating the algebra tiles while maintaining the balances, using the substitution method. Keep track of what you did at each step by writing down the corresponding equivalent equations, as well as what you did to go from one equation to the next. Δ 1. x + 2y = 5 x-2y=1 2. 2x + y = 2 x-2y= 6arrow_forward
- 1. Write a system of two linear equations in slope-intercept form that has exactly one solution at the point (3, 4), such that both lines have positive slope (but neither one has slope of 1) Also write your system of equations with both equations written in standard form without any fractions. 8- 7 8 5 4 3 -2- + -8-7-6-5-4-3-2-1 1 2 3 -1 2 - 4 -5 -7 -8arrow_forwardThe original idea for creating this applet comes from Steve Phelps' Graph the Line applet. Directions: 1) Examine the equation shown on the right side of the screen. 2) Reposition the 2 big points so that the line is the graph of the displayed equation. 3) Click the "Check Answer" checkbox to check. If you're correct, the app will inform you. If you're not, you'll know this as well. If you're not correct, keep trying until you position the gray line correctly. 4) After correctly graphing the line, click the "Generate New Line" button.arrow_forwardProblem 1 & 2 answers 1. One diagonal has 11 squares, then total square in total for two diagonal line is 11 + 11 - 1 = 21 . 2. Each part has 5 squares.(except middle)Multiply by 4: 5 × 4 = 20.Add the middle square: 20 + 1 = 21.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY