Essential University Physics (3rd Edition)
Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 32, Problem 56P

Your stereo is in a dead spot caused by direct reception from an FM radio station at 89.5 MHz interfering with the signal reflecting off a wall behind you. How much farther from the wall should you move so that the interference is fully constructive?

Blurred answer
Students have asked these similar questions
Waves from a radio station have a wavelength of 250 m. They travel by two paths to a home receiver 20.0 km from the transmitter. One path is a direct path, and the second is by reflection from a mountain directly behind the home receiver. What is the minimum distance from the mountain to the receiver that produces destructive interference at the receiver? (Assume that no phase change occurs on reflection from the mountain.)
In an experiment to demonstrate interference, you connect two antennas to a single radio receiver. When the two antennas are adjacent to each other, the received signal is strong. You leave one antenna in place and move the other one directly away from the radio transmission tower. How far should the second antenna be moved in order to receive a minimum signal from a station that broadcasts at 103.4 MHz?
Anna Litical is listening to WBBM - 780 KHz on the radio dial - when she observes destructive interference occurs due to the reflection of radio waves off a plane that is directly above her home. WBBM broadcasts from a location of about 40 miles from her home. Determine the closest possible distance that the plane could be overhead and determine the next three possible heights of the plane. (Assume that the reflected wave does not undergo a phase change upon reflection off the plane.)

Chapter 32 Solutions

Essential University Physics (3rd Edition)

Ch. 32 - In deriving the intensity in double-slit...Ch. 32 - The primary maxima in multiple-slit interference...Ch. 32 - Prob. 8FTDCh. 32 - Sketch roughly the diffraction pattern you would...Ch. 32 - A double-slit system is used to measure the...Ch. 32 - A double-slit experiment with d = 0.025mm and L =...Ch. 32 - A double-slit experiment has slit spacing 0.12 mm....Ch. 32 - The interference pattern from two slits separated...Ch. 32 - The 546-nm green line of gaseous mercury falls on...Ch. 32 - In a five-slit system, how many minima lie between...Ch. 32 - In a three-slit system, the first minimum occurs...Ch. 32 - A five-slit system with 7.5-m slit spacing is...Ch. 32 - Green light at 520 nm is diffracted by a grating...Ch. 32 - Light is incident normally on a grating with...Ch. 32 - Prob. 20ECh. 32 - Find the minimum thickness of a soap film (n =...Ch. 32 - Light of unknown wavelength shines on a precisely...Ch. 32 - Monochromatic light shines on a glass wedge with...Ch. 32 - White light shines on a 75.0-nm-thick sliver of...Ch. 32 - For the soap film described in Conceptual Example...Ch. 32 - For what ratio of slit width to wavelength will...Ch. 32 - Light with wavelength 633 nm is incident on a...Ch. 32 - Youre inside a metal building that blocks radio...Ch. 32 - Find the intensity as a fraction of the central...Ch. 32 - Prob. 30ECh. 32 - Find the minimum telescope aperture that could...Ch. 32 - Whats the longest wavelength of light you could...Ch. 32 - In bright light, the human eyes pupil diameter is...Ch. 32 - Find the angular position of the second-order...Ch. 32 - A double-slit experiment has slit spacing 0.035nm,...Ch. 32 - For a double-slit system with slit spacing 0.0525...Ch. 32 - A screen 1.0 m wide is 2.0 m from a pair of slits...Ch. 32 - A tube of glowing gas emits light at 550 nm and...Ch. 32 - On the screen of a multiple-slit system, the...Ch. 32 - Youre designing a spectrometer whose...Ch. 32 - For visible light with wavelengths from 400 nm to...Ch. 32 - Find the total number of lines in a 2.5-cm-wide...Ch. 32 - What order is necessary to resolve 647.98-nm and...Ch. 32 - A thin film of toluene (n = 1.49) floats on water....Ch. 32 - NASA asks you to assess the feasibility of a...Ch. 32 - In the second-order spectrum from a diffraction...Ch. 32 - Prob. 47PCh. 32 - As a soap bubble with n = 1.333 evaporates and...Ch. 32 - An oil film with refractive index 1.25 floats on...Ch. 32 - The table below lists the angular positions of the...Ch. 32 - Two perfectly flat glass plates are separated at...Ch. 32 - An air wedge like that of Fig. 32.28 shows N...Ch. 32 - A Michelson interferometer uses light from glowing...Ch. 32 - Find the wavelength of light used in a Michelson...Ch. 32 - One arm of a Michelson interferometer is 42.5 cm...Ch. 32 - Your stereo is in a dead spot caused by direct...Ch. 32 - A proposed star wars antimissile laser is to focus...Ch. 32 - Suppose one of the 10-m-diameter Keck Telescopes...Ch. 32 - A camera has an f/1.4 lens, meaning the ratio of...Ch. 32 - The CIA wants your help identifying individual...Ch. 32 - While driving at night, your eyes irises dilate to...Ch. 32 - Under the best conditions, atmospheric turbulence...Ch. 32 - Prob. 63PCh. 32 - An air wedge like that of Fig. 32.28 displays...Ch. 32 - A thin-walled glass tube of length L containing a...Ch. 32 - Light is incident on a diffraction grating at...Ch. 32 - An arrangement known as Lloyds mirror (Fig. 32.29)...Ch. 32 - The intensity of the single-slit diffraction...Ch. 32 - Youre on an international panel charged with...Ch. 32 - Youre investigating an oil spill for your state...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If a point source is located directly above a...Ch. 32 - If a point source is located on a line at 45 to...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY