FUNDAMENTALS OF PHYSICS - EXTENDED
FUNDAMENTALS OF PHYSICS - EXTENDED
12th Edition
ISBN: 9781119773511
Author: Halliday
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 32, Problem 49P

SSMThe exchange coupling mentioned in Module 32-8 as being responsible for ferromagnetism is not the mutual magnetic interaction between two elementary magnetic dipoles. To show this, calculate (a) the magnitude of the magnetic field a distance of 10 nm away, along the dipole axis, from an atom with magnetic dipole moment 1.5 × 10–23 J/T (cobalt), and (b) the minimum energy required to turn a second identical dipole end for end in this field. (e) By comparing the latter with the mean translational kinetic energy of 0.040 eV, what can you conclude?

Blurred answer
Students have asked these similar questions
The exchange coupling as being responsible for ferromagnetism is not the mutual magnetic interaction between two elementary magnetic dipoles. To show this, calculate (a) the magnitude of the magnetic field a distance of 11 nm away, along a dipole axis, from an atom with magnetic dipole moment 1.9 × 10-23 J/T, and (b) the minimum energy required to turn a second identical dipole end for end in this field.
The exchange coupling as being responsible for ferromagnetism is not the mutual magnetic interaction between two elementary magnetic dipoles. To show this, calculate (a) the magnitude of the magnetic field a distance of 15 nm away, along a dipole axis, from an atom with magnetic dipole moment 1.8 x 10-23 J/T, and (b) the minimum energy required to turn a second identical dipole end for end in this field. (a) Number i Units (b) Number i Units
The exchange coupling mentioned in Module 32-8 as being responsible for ferromagnetism is not the mutual magnetic interaction between two elementary magnetic dipoles. To show this, calculate (a) the magnitude of the magnetic field a distance of 10 nm away, along the dipole axis, from an atom with magnetic dipole moment 1.5 * 10-23 J/T (cobalt), and (b) the minimum energy required to turn a second identical dipole end for end in this field. (c) By comparing the latter with the mean translational kinetic energy of 0.040 eV, what can you conclude?

Chapter 32 Solutions

FUNDAMENTALS OF PHYSICS - EXTENDED

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY