
The perpendicular distance (d) between rod AB and the line of action of P.

Answer to Problem 3.64P
The perpendicular distance (d) between rod AB and the line of action of P is 13.06 in._.
Explanation of Solution
Given information:
The length of the vertical rod CD (lCD) is 23 inch.
The length of the rod AB (lAB) is 50 inch.
The force (P) is 235 lb.
The distance between the points O to B (x) is 32 inch.
The distance between the points O to A (y) is 24 inch.
The vertical height of OA (hOA) is 30 inch.
The vertical height of OH (hOH) is 17 inch.
The horizontal distance between point O and midpoint C (dOC) is 16 inch.
The horizontal distance between midpoint C and point G over x axis (dCG) is 21 inch.
The horizontal distance between point B and midpoint C (dBC) is 12 inch.
The horizontal distance between midpoint C and point G over z axis (h) is 18 inch.
Calculation:
Calculate the position vector of AB using the relation:
⇀AB=xi−hOAj−yk
Substitute 32 in. for x, 30 in. for hOA, and 24 in. for y.
⇀AB=32i−30j−24kAB=√(32)2+(−30)2+(−24)2AB=50 in.
Calculate the unit vector of AB (λAB) using the formula:
λAB=⇀ABAB
Substitute 32i−30j−24k for ⇀AB and 50 in. for AB.
λAB=32i−30j−24k50=0.64i−0.6j−0.48k
Apply the force P at the point G.
Calculate the position vector of from point G to point B (rG/B) using the relation:
rG/B=[x−(dOC+dCG)]i+(dBC+h)k
Substitute 32 in. for x, 16 in. for dOC, 21 in. for dCG, 12 in. for dBC, and 18 in. for h.
rG/B=[32−(16+21)]i+(12+18)k=5i+30k
Calculate the position vector of DG using the relation:
⇀DG=dCGi−(hOA2+lCD)j+hk
Substitute 21 in. for dCG, 30 in. for hOA, 23 in. for lCD, and 18 in. for h.
⇀DG=21i−(302+23)j+18k⇀DG=21i−38j+18kDG=√(21)2+(−38)2+(18)2DG=47 in.
Calculate the force (P) using the formula:
P=P⇀DGDG
Substitute 235 lb for P, 21i−38j+18k for ⇀DG, and 47 in. for DG.
P=235×21i−38j+18k47=235×(0.447i−0.808j+0.383k)=105i−189.9j+90k≈105i−190j+90k
Calculate the position vector at P (λP) using the relation:
λP=PP
Substitute 105i−190j+90k for P and 235 lb for P.
λP=105i−190j+90k235=0.447i−0.808j+0.383k
Calculate the angle between AB and P (θ) using the formula:
cosθ=λAB⋅λP
Substitute 0.64i−0.6j−0.48k for λAB and 0.447i−0.808j+0.383k for λP.
cosθ=(0.64i−0.6j−0.48k)⋅(0.447i−0.808j+0.383k)cosθ=0.28608+0.4848−0.18384cosθ=0.5870θ=cos−1(0.5870)θ=54.04°
Calculate the moment about AB (MAB) using the relation:
MAB=λAB⋅(rG/B×P)
Substitute 0.64i−0.6j−0.48k for λAB, 5i+30k for rG/B and 105i−190j+90k for P.
MAB=|0.64−0.6−0.485030105−19090|=[0.64(0−(−5700))]−[(−0.6)(450−3150)]−[0.48(−950−0)]=3648−1620+456=2484 lb⋅in.×112ftin.=207 lb⋅ft
Calculate the perpendicular distance (d) between rod AB and the line of action of P:
Take moment about AB:
MAB=(Psinθ)d
Substitute 235 lb for P and 54.04° for θ, and 207lb⋅ft for MAB.
207=(235sin54.04)dd=207235sin54.04d=1.088 ft×12in.ftd=13.06 in.
Thus, the perpendicular distance (d) between rod AB and the line of action of P is 13.06 in._.
Want to see more full solutions like this?
Chapter 3 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- my ID# is 016948724 please solve this problem step by steparrow_forwardMY ID#016948724 please solve the problem step by spetarrow_forward1 8 4 For the table with 4×4 rows and columns as shown Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forward
- MY ID# 016948724 please solve this problem step by steparrow_forwardThe pickup truck weighs 3220 Ib and reaches a speed of 30 mi/hr from rest in a distance of 200 ft up the 10-percent incline with constant acceleration. Calculate the normal force under each pair of wheels and the friction force under the rear driving wheels. The effective coefficient of friction between the tires and the road is known to be at least 0.8.arrow_forward1. The figure shows a car jack to support 400kg (W=400kg). In the drawing, the angle (0) varies between 15 and 70 °. The links are machined from AISI 1020 hot-rolled steel bars with a minimum yield strength of 380MPa. Each link consists of two bars, one on each side of the central bearings. The bars are 300mm in length (/) and 25 mm in width (w). The pinned ends have the buckling constant (C) of 1.4 for out of plane buckling. The design factor (nd) is 2.5. (1) Find the thickness (t) of the bars and the factor of safety (n). (2) Check if the bar is an Euler beam. Darrow_forward
- (Read image)arrow_forwardUNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO PRIMER EXAMEN PARCIAL DE MECÁNICA DE FLUIDOS I ............ Cusco, 23 de setiembre de 2024 AP. Y NOMBRES: ........ 1.- Para el tanque de la figura: a) Calcule la profundidad de la hidrolina si la profundidad del agua es de 2.8 m y el medidor del fondo del tanque da una lectura de 52.3kPa. b) Calcule la profundidad del agua si la profundidad de la hidrolina es 6.90 m y el medidor de la parte inferior del tanque registra una lectura de 125.3 kPa. Hidrolina Sp=0.90 Abertura Agua sup suge to but amulor quit y 2.- Calcule la magnitud de la fuerza resultante sobre el área A-B y la ubicación del centro de presión. Señale la fuerza resultante sobre el área y dimensione su ubicación con claridad. 3.5 ft 12 in: Oil (38-0.93) 14 in 8 inarrow_forwardplease solve this problem and give me the correct answer step by steparrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





