Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 27P
(a)
To determine
The ratio of potential difference across the resistor to the emf across the inductor when current in the circuit is
(b)
To determine
The emf across the inductor when current in the circuit is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the RL circuit shown in the figure below, let the inductance be 2.75 H, the resistance 7.15 N, and the battery emf 36.0
V.
S
R
(a) Calculate AVR/E,, that is, the ratio of the potential difference across the resistor to the emf across the inductor
when the current is 2.00 A.
Δν,
(b) Calculate the emf across the inductor when the current is 4.50 A.
V
ll
An RL circuit has an emf source of 28 v, a 62 resistor, a 38 H inductor, and a
switch. At what rate, as a function of t, does the emf across the inductor
change after the switch is closed?
A battery of emf E is connected in series with a resistor, an inductor L, and a switch S. A capacitor C is connected in parallel to the inductor. When the switch is left in the closed position for a long time, the potential difference across the
capacitor is zero. The switch is opened and the maximum potential difference across the capacitor is measured to be 140 V. Determine the capacitance of the capacitor if E = 60 V, R = 125 N, and L = 54.0 mH.
ww
R
Chapter 32 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 32.1 - A coil with zero resistance has its ends labeled a...Ch. 32.2 - Prob. 32.2QQCh. 32.3 - Prob. 32.3QQCh. 32.4 - Prob. 32.4QQCh. 32.5 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 1OQCh. 32 - Prob. 2OQCh. 32 - Prob. 3OQCh. 32 - Prob. 4OQCh. 32 - Prob. 5OQ
Ch. 32 - Prob. 6OQCh. 32 - Prob. 7OQCh. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 10CQCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - Prob. 8PCh. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Prob. 60APCh. 32 - Prob. 61APCh. 32 - Prob. 62APCh. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 64APCh. 32 - Prob. 65APCh. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 67APCh. 32 - Prob. 68APCh. 32 - Prob. 69APCh. 32 - Prob. 70APCh. 32 - Prob. 71APCh. 32 - Prob. 72APCh. 32 - Prob. 73APCh. 32 - Prob. 74APCh. 32 - Prob. 75APCh. 32 - Prob. 76APCh. 32 - Prob. 77APCh. 32 - Prob. 78CPCh. 32 - Prob. 79CPCh. 32 - Prob. 80CPCh. 32 - Prob. 81CPCh. 32 - Prob. 82CPCh. 32 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An inductor and a resistor are connected in series across an AC source as in Figure OQ33.1. Immediately after the switch is closed, which of the following statements is true? (a) The current in the circuit is V/R. (b) The voltage across the inductor is zero, (c) The current in the circuit is zero, (d) The voltage across the resistor is V (e) The voltage across the inductor is half its maximum value.arrow_forwardWhen a wire carries an AC current with a known frequency, you can use a Rogowski coil to determine the amplitude Imax of the current without disconnecting the wire to shunt the current through a meter. The Rogowski coil, shown in Figure P23.8, simply clips around the wire. It consists of a toroidal conductor wrapped around a circular return cord. Let n represent the number of turns in the toroid per unit distance along it. Let A represent the cross-sectional area of the toroid. Let I(t) = Imax sin t represent the current to be measured. (a) Show that the amplitude of the emf induced in the Rogowski coil is Emax=0nAImax. (b) Explain why the wire carrying the unknown current need not be at the center of the Rogowski coil and why the coil will not respond to nearby currents that it does not enclose. Figure P23.8arrow_forwardIn the LC circuit in Figure 33.11, the inductance is L = 19.8 mH and the capacitance is C = 19.6 mF. At some moment, UB = UE= 17.5 mJ. a. What is the maximum charge stored by the capacitor? b. What is the maximum current in the circuit? c. At t = 0, the capacitor is fully charged. Write an expression for the charge stored by the capacitor as a function of lime. d. Write an expression for the current as a function of time.arrow_forward
- (i) When a particular inductor is connected to a source of sinusoidally varying emf with constant amplitude and a frequency of 60.0 Hz, the rms current is 3.00 A. What is the rms current if the source frequency is doubled? (a) 12.0 A (b) 6.00 A (c) 4.24 A (d) 3.00 A (e) 1.50 A (ii) Repeat part (i) assuming the load is a capacitor instead of an inductor. (iii) Repeat part (i) assuming the load is a resistor instead of an inductor.arrow_forwardA resistor and inductor are connected to a 9.0 V battery by a switch as shown. The moment the switch is closed, current flows through the circuit. The resistor has a resistance of R = 440 Ω and the inductor has an inductance of L = 150 mH. a) write an equation that relates the current as a function of time i(t) to the maximum current, imax. Express the equation in terms of imax and α, where α = -t/T (time constant). b) determine the time, in seconds, at which the current has a value of i(t50) = 50% of imax. c) determine the time, in seconds, at which the current has a value of i(t99) = 99% of imax.arrow_forwardThe current flowing through a circuit is changing at a rate of 6.00 A/s. If the circuit contains a 190.0 H inductor, what is the emf across the inductor?arrow_forward
- An RLC circuit consists of a 1.34 2 resistor, a 8.44 nF capacitor, and a 5.55 mH inductor. Initially, the voltage across the capacitor is 1.46 V, and no current is flowing in the circuit. How many oscillations occur as the charge amplitude on the capacitor decays to 67.4% of its initial value? It is acceptable to let w' = w. i oscillations (include decimals if needed to keep the appropriate number of significant digits in your answer)arrow_forwardAn L-C Circuit consists of an inductor with an inductance of 65.0 mH and a capacitor with a capacitance of 300 uF. The initial charge on the capacitor is 6.00 uC, and the initial current in the inductor is zero.arrow_forwardFor the RL circuit shown in Figure, let the inductance be 3.00 H, the resistance 8.50 ohm, and the battery emf 36.0 V. (a) Calculate the ratio of the potential difference across the resistor to that across the inductor when the current is 2.00 A. delta V_R/delta V_L (b) Calculate the voltage across the inductor when the current is 4.50 Aarrow_forward
- An RLC circuit consists of a 46.3 2 resistor, a 2.47 µF capacitor, and a 4.16 mH inductor. Initially, the voltage across the capacitor is 3.08 V, and no current is flowing in the circuit. How many oscillations occur as the charge amplitude on the capacitor decays to 10.3 × 106 of its initial value? It is not acceptable to let w' = @. i oscillations (include decimals if needed to keep the appropriate number of significant digits)arrow_forwarda 12.0 V ideal battery, a 20.0 resistor, and an inductor are connected by a switch at time t = 0. At what rate is the battery transferring energy to the inductor’s field at t = 1.61tL?arrow_forwardAn inductor has a current I(t) = (0.480 A) cos[(260 s-1)t] flowing through it. If the maximum emf %3D across the inductor is equal to 0.530 V, what is the self-inductance of the inductor, in mH? A 110-V hair dryer is rated at 1200 W. What current will it draw when operating from a 110-V electrical outlet? A small glass bead has been charged to 4.5 nC. What is the magnitude of the electric field 2.0 cm from the center of the bead? (k = 1/4nE 0 = 8.99 x 10° N. m2/C2) %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning