Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 31, Problem 35P
To determine
The acceleration of the particle of the same size that a laser light can be focused to a spot with a radius
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q/4) The laser cavity length is 1 [m]. At
one end a convex mirror with radius
of curvature of 200 [Cm]. At the
other end a concave mirror with
radius of curvature of 0.1 [m]. Find if
this cavity is stable.
*60 The beam from an argon laser (of wavelength 515 nm) has a di-
ameter d of 3.00 mm and a continuous energy output rate of 5.00 W.
The beam is focused onto a diffuse surface by a lens whose focal length
fis 3.50 cm. A diffraction pattern such as that of Fig. 36-10 is formed,
the radius of the central disk being given by
1.22 fA
R =
(see Eq. 36-12 and Fig. 36-14). The central disk can be shown to con-
tain 84% of the incident power. (a) What is the radius of the central
disk? (b) What is the average intensity (power per unit area) in the
incident beam? (c) What is the average intensity in the central disk?
B) Using the properties of F.T., Calculate the F.T. of the signal
sin (3πt) sin (5πt)
t²
x(t) = 5-
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 31.4 - Prob. 1AECh. 31.6 - Return to the Chapter-Opening Question, page 812,...Ch. 31.6 - What are the frequencies of (a) an 80-m-wavelength...Ch. 31.6 - Prob. 1DECh. 31.6 - If you are on the phone via satellite to someone...Ch. 31.6 - If your voice traveled as a sound wave, how long...Ch. 31 - An electric field E points away from you, and its...Ch. 31 - Prob. 2QCh. 31 - Prob. 3QCh. 31 - The electric field in an EM wave traveling north...
Ch. 31 - Is sound an electromagnetic wave? If not, what...Ch. 31 - Can EM waves travel through a perfect vacuum? Can...Ch. 31 - When you flip a light switch, does the overhead...Ch. 31 - Are the wavelengths of radio and television...Ch. 31 - What does the wavelength calculated in Example...Ch. 31 - Prob. 11QCh. 31 - In the electromagnetic spectrum, what type of EM...Ch. 31 - Can radio waves have the same frequencies as sound...Ch. 31 - Discuss how cordless telephones make use of EM...Ch. 31 - Can two radio or TV stations broadcast on the same...Ch. 31 - If a radio transmitter has a vertical antenna,...Ch. 31 - The carrier frequencies of FM broadcasts are much...Ch. 31 - A lost person may signal by flashing a flashlight...Ch. 31 - Determine the rate at which the electric field...Ch. 31 - Prob. 2PCh. 31 - At a given instant, a 2.8-A current flows in the...Ch. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - If the electric field in an EM wave has a peak...Ch. 31 - Prob. 9PCh. 31 - In an EM wave travelling west, the B field...Ch. 31 - Prob. 11PCh. 31 - Consider two possible candidates E(x, t) as...Ch. 31 - What is the frequency of a microwave whose...Ch. 31 - (a) What is the wavelength of a 25.75 109 Hz...Ch. 31 - How long does it take light to reach us from the...Ch. 31 - An EM wave has frequency 8.56 1014Hz. What is its...Ch. 31 - Electromagnetic waves and sound waves can have the...Ch. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - What is the minimum angular speed at which...Ch. 31 - Prob. 22PCh. 31 - The magnetic field in a traveling EM wave has an...Ch. 31 - Prob. 24PCh. 31 - A spherically spreading EM wave comes from a...Ch. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - A 15.8-mW laser puts out a narrow beam 2.00 mm in...Ch. 31 - Estimate the average power output of the Sun,...Ch. 31 - Prob. 30PCh. 31 - How practical is solar power for various devices?...Ch. 31 - The Arecibo radio telescope in Puerto Rico can...Ch. 31 - Estimate the radiation pressure due to a 75-W bulb...Ch. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - What size should the solar panel on a satellite...Ch. 31 - What is the range of wavelengths for (a) FM radio...Ch. 31 - Estimate the wavelength for 1.9-GHz cell phone...Ch. 31 - The variable capacitor in the tuner of an AM radio...Ch. 31 - A certain FM radio tuning circuit has a fixed...Ch. 31 - A satellite beams microwave radiation with a power...Ch. 31 - A 1.60-m-long FM antenna is oriented parallel to...Ch. 31 - Who will hear the voice of a singer first: a...Ch. 31 - Prob. 45GPCh. 31 - Prob. 46GPCh. 31 - A radio voice signal from the Apollo crew on the...Ch. 31 - Cosmic microwave background radiation fills all...Ch. 31 - What are E0 and B0 2.00 m from a 75-W light...Ch. 31 - Prob. 50GPCh. 31 - Prob. 51GPCh. 31 - How large an emf (rms) will he generated in an...Ch. 31 - The average intensity of a particular TV stations...Ch. 31 - A radio station is allowed to broadcast at an...Ch. 31 - A point source emits light energy uniformly in all...Ch. 31 - Suppose a 35-kW radio station emits EM waves...Ch. 31 - What is the maximum power level of a radio station...Ch. 31 - In free space (vacuum), where the net charge and...Ch. 31 - The metal walls of a microwave oven form a cavity...Ch. 31 - Imagine that a steady current I flows in a...Ch. 31 - Prob. 61GPCh. 31 - Suppose that a right-moving EM wave overlaps with...Ch. 31 - The electric and magnetic fields of a certain EM...
Knowledge Booster
Similar questions
- If electron is to be diffracted significantly by a crystal, its wavelength must be about equal to the spacing, d, of crystalline planes. Assuming d=0.250 nm, estimate the potential difference through which an electron must be accelerated from rest if it is to be diffracted by these planes.arrow_forwardQ/1) The length of the optical cavity of a Nd-YAG laser is 30 [cm] and the wavelength 1.06µm. The index of refraction of the laser rod is 1.823.. Calculate (1) The difference in frequencies between adjacent modes. (2)The number of the emitted longitudinal mode at this wavelength.arrow_forwardThe diffraction of radiation can be used to determine the spacing between atoms. In practice, the wavelength of the radiation used should be restricted to a value which is of the same order of magnitude as the interatomic distances to be determined. Such experiments are commonly performed using X-rays (electromagnetic radiation), however a beam of subatomic particles, such as of neutrons or electrons, may also be used if their corresponding de Broglie wavelength is of the appropriate magnitude. Calculate the de Broglie wavelength of a neutron (mn = 1.67493×10-27 kg) moving at one four hundredth of the speed of light (c/400). (Enter at least 4 significant figures.) Calculate the velocity of an electron (me = 9.10939×10-31 kg) having a de Broglie wavelength of 167.1 pm.arrow_forward
- (e) Given that the speed of light (v = c/n, were n is the refractive index) in a particular direction is inversely proportional to the linear density of atoms, calculate how much faster light is in the [100] vs the [111] direction in an FCC crystal.arrow_forwardAn X-ray beam with A = 154 pm incident on the surface of a crystal produced a maximum reflection at an angle of e = 28.3°. Assuming n = 1, calculate the separation between layers of atoms in the crystal.arrow_forwardX-rays with wavelengths of 128 pm was used to study a crystal which produced a reflection of 15.8 degrees. Assuming first order diffraction (n = 1), what is the distance between the planes of atoms (d)?arrow_forward
- An x-ray light source of a wavelength of 1.28 E-12 m is shot at a piece of graphite. On the other side an x-ray is scattered at an angle of 15.0 degrees from its original path. Determine the wavelength of the scattered x-ray and then the velocity of the ejected electron.arrow_forwardX-rays of wavelength equal to 0.134 nm give a first order diffraction from the surface of a crystal when the value of 0(theta) is 10.5°. Calculate the distance between the planes in the crystal parallel to the surface examined. Should correct with full explanation. (Gpt/Ai wrong answer not allowed)arrow_forwardA CD-ROM is used instead of a crystal in an electron diffraction experiment. The surface of the CD-ROM has tracks of tiny pits with a uniform spacing of 1.60 mm. (a) If the speed of the electrons is 1.26 X 104 m/s, at which values of q will the m = 1 and m = 2 intensity maxima appear? (b) The scattered electrons in these maxima strike at normal incidence a piece of photographic film that is 50.0 cm from the CD-ROM. What is the spacing on the film between these maxima?arrow_forward
- why 200 diffraction peak appears in primitive cubic unit cell though plane (2 0 0) does not contain any atom.arrow_forwardYou are given a small bar of an unknown metal. You find the density of the metal to be 18.6 g/cm3. An x-yar diffraction experiment measures the edge of the face-centered cubic unit cell as 4.13 x 10-10m. Find the atomic weight (in g/mol) of this metal and assess its identity.arrow_forwardY(x, t) = y(x)e-it = (Aeikx + Be-ikx) e-iant = Aei(kx-ot) + Be-i(kx+at), (38-25) 13 In Eq. 38-25 keep both terms, putting A = B = yo. The equa- tion then describes the superposition of two matter waves of equal amplitude, traveling in opposite directions. (Recall that this is the condition for a standing wave.) (a) Show that P(x, t)2 is then given by (x, t)² = 2y[1 + cos 2kx]. (b) Plot this function, and demonstrate that it describes the square of the amplitude of a standing matter wave. (c) Show that the nodes of this standing wave are located at where n = 0, 1, 2, 3, ... 1) (1/₁). x = (2n + 1) and is the de Broglie wavelength of the particle. (d) Write a simi- lar expression for the most probable locations of the particle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning