Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 20P
To determine
The number of photons if the look for a tenth of a second at sun and the absorption of energy by the human eye.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The energy flux of sunlight reaching the surface of the earth is 1.388 x 10³ w/m?. How
many photons (nearly) per square metre are incident on the Earth per second? Assume
that the photons in the sunlight have an average wavelength of 550 nm.
energy flux of sunlight reaching the surface of
the earth is 1.388 x 10^3 W/m^2. How many
photons (nearly) per square meter are incident
on the Earth per second? Assume that the
photons in the sunlight have an average
wavelength of 550 nm.
A dental X-ray typically affects 194 g of tissue and delivers about 3.6 µJ of energy using X-rays that have wavelengths of
0.025 nm.
What is the energy Ephoton, in electron volts, of X-ray photons?
eV
Ephoton =
How many photons are absorbed during the dental X-ray? Assume the body absorbs all of the incident X-rays.
photons
number of photons absorbed:
Chapter 31 Solutions
Physics for Scientists and Engineers
Ch. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10P
Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - Prob. 49PCh. 31 - Prob. 50PCh. 31 - Prob. 51PCh. 31 - Prob. 52PCh. 31 - Prob. 53PCh. 31 - Prob. 54PCh. 31 - Prob. 55PCh. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - Prob. 58PCh. 31 - Prob. 59PCh. 31 - Prob. 60PCh. 31 - Prob. 61PCh. 31 - Prob. 62PCh. 31 - Prob. 63PCh. 31 - Prob. 64PCh. 31 - Prob. 65PCh. 31 - Prob. 66PCh. 31 - Prob. 67PCh. 31 - Prob. 68PCh. 31 - Prob. 69PCh. 31 - Prob. 70PCh. 31 - Prob. 71PCh. 31 - Prob. 72PCh. 31 - Prob. 73PCh. 31 - Prob. 74PCh. 31 - Prob. 75PCh. 31 - Prob. 76PCh. 31 - Prob. 77PCh. 31 - Prob. 78PCh. 31 - Prob. 79PCh. 31 - Prob. 80PCh. 31 - Prob. 81PCh. 31 - Prob. 82PCh. 31 - Prob. 83PCh. 31 - Prob. 84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The intensity of the sunlight reaching the Earth's surface is 1268 W/m2 and the average wavelength of the sunlight is 550 nm. (A) Energy of each photon = (B) Number of photons in the sunlight reaching the Earth's surface per square meter per second = (C) Energy deposited on a solar-panel of size 3.4 m x 2 m per second = (D) Energy converted to electricity per second by this solar-panel if its efficiency is 27.4% =arrow_forwardRight naaoarrow_forwardThe human eye can barely detect a star whose intensity at the earth’s surface is 1.6 x 10-11 W/m2. If the dark-adapted eye has a pupil diameter of 7.0 mm, how many photons per second enter the eye from the star? Assume the starlight has a wavelength of 550 nm.arrow_forward
- 5aarrow_forwardThe threshold of dark-adapted (scotopic) vision is 2.8 ✕ 10−11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 8.4 mm, how many photons per second enter the eye? _________photons/sarrow_forwardA glass plate has a mass of 0.50 kg and a specific heat capacity of 840 J/(kg-C). The wavelength of infrared light is 14 x 10 m, while the wavelength of blue light is 4.7 x 107m. Find the number of infrared photons and the number of blue photons needed to raise the temperature of the glass plate by 2.0 °C, assuming that all the photons are absorbed by the glass. Nudrored Number Units Nyisible - Number Unitsarrow_forward
- The human body has a surface area of approximately 1.8 m2, a surface temperature of approximately 30°C, and a typical emissivity at infrared wavelengths of e = 0.97. If we make the approximation that all photons are emitted at the wavelength of peak intensity, how many photons per second does the body emit?arrow_forwardThe threshold of dark-adapted (scotopic) vision is 4.5 x 10-¹1 W/m² at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 9.0 mm, how many photons per second enter the eye? Xarrow_forwardThe average threshold of dark-adapted (scotopic) vision is 4.00 10-11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye and the pupil is open to its maximum diameter of 9.00 mm, how many photons per second enter the eye? photons/sarrow_forward
- One of the first signs of sunburn is the reddening of the skin (called erythema). As a very rough rule of thumb, erythema occurs if 14.0 mJ of ultraviolet light of approximately 308 nm wavelength (referred to as UVB radiation) is incident on the skin per square centimeter during a single exposure. How many photons are incident on 1.00 cm2 of skin in this amount of exposure? photonsarrow_forwardSuppose a hot object radiates with the twice the intensity as the sun on earth, i.e. 2600W/m2. What is the energy density of this radiation?arrow_forwardQuestion: The electronic structure of atoms and molecules may be investigated using photoelectron spectroscopy. An electron in a photoelectron spectrometer is accelerated from rest by a uniform electric field to a speed of 420 km s−1 in 10 µs. Determine the kinetic energy of the electron?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning