Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 30, Problem 93GP

A resistor R, capacitor C, and inductor L are connected in parallel across an ac generator as shown in Fig. 30–34. The source emf is V = V0 sin ωt. Determine the current as a function of time (including amplitude and phase): (a) in the resistor, (b) in the inductor, (c) in the capacitor, (d) What is the total current leaving the source? (Give amplitude I0 and phase) (e) Determine the impedance Z defined as Z =V0/I0). (f) What is the power factor?

FIGURE 30–34

Problem 93.

Chapter 30, Problem 93GP, A resistor R, capacitor C, and inductor L are connected in parallel across an ac generator as shown

93.

(a)    Since the three elements are connected in parallel at any given instant in time they will all three have the same voltage drop across them. That is the voltages across each element will be in phase with the source. The current in the resistor is in phase with the voltage source with magnitude given by Ohm’s law.

I R ( t ) = V 0 R sin ω t

(b)    The current through the inductor will lag behind the voltage by π/2, with magnitude equal to the voltage source divided by the inductive reactance.

L C ( t ) = V 0 X L sin ( ω t π 2 )

(c)    The current through the capacitor leads the voltage by π/2, with magnitude equal to the voltage source divided by the capacitate reactance.

I C ( t ) = V 0 X C sin ( ω t + π 2 )

(d)    The total current is the sum of the currents through each element. We use a phasor diagram to add the currents, as was used in Section 30-8 to add the voltages with different phases. The net current is found by subtracting the current through the inductor from the current through the capacitor. Then using the Pythagorean theorem to add the current through the resistor. We use the tangent function to find the phase angle between the current and voltage source.

I 0 = I R 0 2 + ( I C 0 I L 0 ) 2 = ( V 0 R ) 2 + ( V 0 X C V 0 X L ) 2 = V 0 R 1 + ( R ω C 1 R ω L ) 2 I ( t ) = V 0 R 1 + ( R ω C R ω L ) 2 sin ( ω t + ϕ ) tan ϕ = V 0 X C V 0 X L V 0 R ϕ = tan 1 ( R X C R X L ) = tan 1 ( R ω C R ω L )

(e) We divide the magnitude of the voltage source by the magnitude of the current to find the impedance.

Z = V 0 I 0 = V 0 V 0 R 1 + ( R ω C R ω L ) 2 = R 1 + ( R ω C R ω L ) 2

(f) The power factor is the ratio of the power dissipated in the circuit divided by the product of the rms voltage and current.

I R , mrs 2 R V rms I rms = I R 2 R V 0 I 0 = ( V 0 R ) 2 R V 0 V 0 R 1 + ( R ω C R ω L ) 2 = 1 1 + ( R ω C R ω L ) 2

Blurred answer
Students have asked these similar questions
Do it asap
Problem 5 A capacitor C is connected to an inductor L in a closed loop circuit. Initially the capacitor has a charge Qo, and the current is zero. The modified Krchoff loop rule for this circuit is 18 L. dt (a) Rewrite this equation in terms of charge only, by expressing the current In terms of the rate of change of the charge on the capacitor. Show that the charge obeys the following equation: d² 2Q 1 Q = 0. LC dt2 (b) This is 280morphnc to the equation for a mass m connected to a spring with stiffness constant k, moving along the x axis +. dt² 0, except that charge Q plays the role of the displacement r. Recall that a mass connected to a spring oscillates, with a natural frequency wo = comparison, if L = 1 mH, and C = oscillation of this LC series circuit? VElm. By 10 µF, what is the natural frequeney of
Problem 3: An AC voltage source is connected to an inductor with inductance 0.059 H. The voltage source provides a time- dependent voltage V across the inductor as described by Vt) - Vo sin(ot), where vo- 257 V and co - 992 rad/s. Part (a) Find the current through the inductor, in amperes with its sign, at time t 2.4 s Part (b) Calculate the instantaneous power, in watts with its sign, that the inductor is absorbing at time t = 2.4 s. P(t)

Chapter 30 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - If you are given a fixed length of wire, how would...Ch. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - What keeps an LC circuit oscillating even after...Ch. 30 - Is the ac current in the indicator always the same...Ch. 30 - Prob. 11QCh. 30 - In an ac LRC circuit, if XL XC, the circuit is...Ch. 30 - Prob. 13QCh. 30 - Under what conditions is the impedance in an LRC...Ch. 30 - Is it possible for the instantaneous power output...Ch. 30 - In an ac LRC circuit, does the power factor, cos,...Ch. 30 - Describe briefly how the frequency of the source...Ch. 30 - Prob. 18QCh. 30 - In an LRC circuit, the current and the voltage in...Ch. 30 - Compare the oscillations or an LRC circuit to the...Ch. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - (I) If the current in a 280-mH coil changes...Ch. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - (II) If the outer conductor of a coaxial cable has...Ch. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - (II) Ignoring any mutual inductance, what is the...Ch. 30 - (I) The magnetic field inside an air-filled...Ch. 30 - (I) Typical large values for electric and magnetic...Ch. 30 - (II) What is the energy density at the center of a...Ch. 30 - (II) Calculate the magnetic and electric energy...Ch. 30 - Prob. 19PCh. 30 - (II) Determine the total energy stored per unit...Ch. 30 - (II) Determine the total energy stored per unit...Ch. 30 - Prob. 22PCh. 30 - (II) How many time constants does it take for the...Ch. 30 - (II) It takes 2.56 ms for the current in an LR...Ch. 30 - Prob. 25PCh. 30 - (II) In the circuit of Fig. 3027, determine the...Ch. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - (II) A 12-V battery has been connected to an LR...Ch. 30 - Prob. 30PCh. 30 - (I) The variable capacitor in the tuner of an AM...Ch. 30 - Prob. 32PCh. 30 - (II) In some experiments, short distances are...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - (I) At what frequency will a 32.0-mH inductor have...Ch. 30 - (I) What is the reactance of a 9.2-F capacitor at...Ch. 30 - (I) Plot a graph of the reactance of a 1.0-F...Ch. 30 - (I) Calculate the reactance of, and rms current...Ch. 30 - (II) A resistor R is in parallel with a capacitor...Ch. 30 - Prob. 44PCh. 30 - (II) (a) What is the reactance of a 0.086-F...Ch. 30 - Prob. 46PCh. 30 - (II) A current I = 1.80 cos 377t (I in amps, t in...Ch. 30 - (I) A 10.0-k resistor is in series with a 26.0-mH...Ch. 30 - (I) A 75- resistor and a 6.8-F capacitor are...Ch. 30 - (I) For a 120-V, 60-Hz voltage, a current of 70 mA...Ch. 30 - (II) A 2.5-k resistor in series with a 420-mH...Ch. 30 - (II) (a) What is the rms current in a series RC...Ch. 30 - (II) An ac voltage source is connected in series...Ch. 30 - (II) Determine the total impedance, phase angle,...Ch. 30 - (II) (a) What is the rms current in a series LR...Ch. 30 - (II) A 35-mH inductor with 2.0- resistance is...Ch. 30 - (II) A 25-mH coil whose resistance is 0.80 is...Ch. 30 - (II) A 75-W lightbulb is designed to operate with...Ch. 30 - (II) In the LRC circuit or Fig. 3019, suppose I =...Ch. 30 - (II) An LRC series circuit with R = 150 , L = 25...Ch. 30 - (II) An LR circuit can be used as a phase shifter....Ch. 30 - (I) A 3800-pF capacitor is connected in series to...Ch. 30 - (I) What is the resonant frequency of the LRC...Ch. 30 - (II) An LRC circuit has L = 4.15 mH and R = 3.80...Ch. 30 - (II) The frequency of the ac voltage source (peak...Ch. 30 - (II) Capacitors made from piezoelectric materials...Ch. 30 - (II) (a) Determine a formula for the average power...Ch. 30 - (II) (a) Show that oscillation of charge Q on the...Ch. 30 - (II) A resonant circuit using a 220-nF capacitor...Ch. 30 - Prob. 70PCh. 30 - Prob. 71GPCh. 30 - Prob. 72GPCh. 30 - At time t = 0, the switch in the circuit shown in...Ch. 30 - Prob. 74GPCh. 30 - Prob. 75GPCh. 30 - Assuming the Earths magnetic field averages about...Ch. 30 - (a) For an underdamped LRC circuit, determine a...Ch. 30 - An electronic device needs to be protected against...Ch. 30 - Prob. 79GPCh. 30 - Prob. 80GPCh. 30 - An ac voltage source V=V0sin(t+90) is connected...Ch. 30 - A circuit contains two elements, but it is not...Ch. 30 - A 3.5-k resistor in series with a 440-mH inductor...Ch. 30 - (a) What is the rms current in on RC circuit if R...Ch. 30 - An inductance coil draws 2.5 A de when connected...Ch. 30 - The Q-value of a resonance circuit can be defined...Ch. 30 - Show that the fraction of electromagnetic energy...Ch. 30 - In a series LRC circuit, the inductance is 33mH,...Ch. 30 - Prob. 89GPCh. 30 - A voltage V = 0.95 sin 754t is applied to an LRC...Ch. 30 - Filler circuit. Figure 3033 shows a simple filler...Ch. 30 - Show that if the inductor L in the filter circuit...Ch. 30 - A resistor R, capacitor C, and inductor L are...Ch. 30 - Suppose a series LRC circuit has two resisiors, R1...Ch. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - You have a small electromagnet that consumes 350 W...Ch. 30 - An inductor L in series with a resistor R, driven...Ch. 30 - In a certain LRC series circuit, when the ac...Ch. 30 - Prob. 100GPCh. 30 - Prob. 101GPCh. 30 - For the circuit shown in Fig. 3038, show that if...Ch. 30 - (II) The RC circuit shown in Fig. 3039 is called a...Ch. 30 - (II) The RC circuit shown in Fig. 3040 is called a...Ch. 30 - (III) Write a computer program or use a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY