Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
1st Edition
ISBN: 9781337684637
Author: Debora M. Katz
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 30, Problem 90PQ
A mass spectrometer (Fig. 30.40, page 956) operates with a uniform magnetic field of 20.0 mT and an electric field of 4.00 × 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle (ma = 6.64 × 10−27 kg)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mass spectrometer (see figure below) operates with a uniform magnetic field of 21.0 mT and an electric field of 3.55 ✕ 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle
(ma = 6.64 ✕ 10−27 kg)?
A 150-V battery is connected across two parallel metal plates of area 28.5 cm2 and separation 8.20 mm. A beam of alpha particles (charge +2e, mass 6.64 x 10-27 kg) is accelerated from rest through a potential difference of 75 kV and enters the region between the plates perpendicular to the electric field. What magnitude and direction of magnetic field are needed so that the alpha particles emerge undeflected from between the plates?
A 180 V battery is connected across two parallel metal plates of area 28.5 cm2cm2 and
separation 7.20mm. A beam of alpha particles (charge +2e+2e, mass 6.64x10-27kg6.64x10-27kg) is
accelerated from rest through a potential difference of 1.50 kV and enters the region between the plates
perpendicular to the electric field,
What magnitude of magnetic field is needed so that the alpha particles emerge undeflected from between
the plates?
Express your answer with the appropriate units.
„What is the direction of this magnetic field?
The magnetic field is directed out of the page.
The magnetic field is directed upward.
The magnetic field is directed into the page.
The magnetic field is directed downward.
Chapter 30 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
Ch. 30.2 - Prob. 30.1CECh. 30.3 - Prob. 30.2CECh. 30.4 - Prob. 30.3CECh. 30.8 - Cosmic rays are high-energy charged particles...Ch. 30.9 - The Earths Van Allen belts (Fig. 30.34) are a...Ch. 30.10 - Prob. 30.6CECh. 30.10 - Prob. 30.7CECh. 30.12 - Prob. 30.8CECh. 30 - A yoga teacher tells her students to imagine their...Ch. 30 - Prob. 2PQ
Ch. 30 - Prob. 3PQCh. 30 - Prob. 4PQCh. 30 - Prob. 5PQCh. 30 - Copy Figure P30.6 and sketch the magnetic field...Ch. 30 - Prob. 7PQCh. 30 - Prob. 9PQCh. 30 - Figure P30.10 shows a circular current-carrying...Ch. 30 - Figure P30.11 shows three configurations of wires...Ch. 30 - Review A proton is accelerated from rest through a...Ch. 30 - An electron moves in a circle of radius r at...Ch. 30 - One common type of cosmic ray is a proton...Ch. 30 - Prob. 15PQCh. 30 - Prob. 16PQCh. 30 - Prob. 17PQCh. 30 - A Two long, straight, parallel wires are shown in...Ch. 30 - Prob. 19PQCh. 30 - Two long, straight, parallel wires carry current...Ch. 30 - Prob. 21PQCh. 30 - Two long, straight wires carry the same current as...Ch. 30 - Prob. 23PQCh. 30 - A wire is bent in the form of a square loop with...Ch. 30 - Prob. 25PQCh. 30 - A Derive an expression for the magnetic field...Ch. 30 - Prob. 27PQCh. 30 - Prob. 28PQCh. 30 - Prob. 29PQCh. 30 - Prob. 30PQCh. 30 - Prob. 31PQCh. 30 - Prob. 32PQCh. 30 - Prob. 33PQCh. 30 - Prob. 34PQCh. 30 - Normally a refrigerator is not magnetized. If you...Ch. 30 - Prob. 36PQCh. 30 - Prob. 37PQCh. 30 - The magnetic field in a region is given by...Ch. 30 - Prob. 39PQCh. 30 - Prob. 40PQCh. 30 - Prob. 41PQCh. 30 - The velocity vector of a singly charged helium ion...Ch. 30 - Prob. 43PQCh. 30 - Can you use a mass spectrometer to measure the...Ch. 30 - In a laboratory experiment, a beam of electrons is...Ch. 30 - Prob. 46PQCh. 30 - Prob. 47PQCh. 30 - Prob. 48PQCh. 30 - A proton and a helium nucleus (consisting of two...Ch. 30 - Two ions are accelerated from rest in a mass...Ch. 30 - Prob. 51PQCh. 30 - Prob. 52PQCh. 30 - A rectangular silver strip is 2.50 cm wide and...Ch. 30 - For both sketches in Figure P30.56, there is a...Ch. 30 - A 1.40-m section of a straight wire oriented along...Ch. 30 - Professor Edward Ney was the founder of infrared...Ch. 30 - Prob. 59PQCh. 30 - A wire with a current of I = 8.00 A directed along...Ch. 30 - Prob. 61PQCh. 30 - The triangular loop of wire shown in Figure P30.62...Ch. 30 - Prob. 63PQCh. 30 - Consider the wires described in Problem 63. Find...Ch. 30 - Prob. 65PQCh. 30 - Prob. 66PQCh. 30 - A Three parallel current-carrying wires are shown...Ch. 30 - Prob. 68PQCh. 30 - Prob. 69PQCh. 30 - Prob. 70PQCh. 30 - Prob. 71PQCh. 30 - Prob. 72PQCh. 30 - A circular coil 15.0 cm in radius and composed of...Ch. 30 - Prob. 74PQCh. 30 - Prob. 75PQCh. 30 - Prob. 76PQCh. 30 - Prob. 77PQCh. 30 - Two long, straight, current-carrying wires run...Ch. 30 - Prob. 79PQCh. 30 - Prob. 80PQCh. 30 - Prob. 81PQCh. 30 - Prob. 82PQCh. 30 - Two infinitely long current-carrying wires run...Ch. 30 - Prob. 84PQCh. 30 - Prob. 85PQCh. 30 - Prob. 86PQCh. 30 - A charged particle with charge q and velocity...Ch. 30 - Prob. 88PQCh. 30 - Prob. 89PQCh. 30 - A mass spectrometer (Fig. 30.40, page 956)...Ch. 30 - Three long, current-carrying wires are parallel to...Ch. 30 - Prob. 92PQCh. 30 - A current-carrying conductor PQ of mass m and...Ch. 30 - A proton enters a region with a uniform electric...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proton precesses with a frequency p in the presence of a magnetic field. If the intensity of the magnetic field is doubled, what happens to the precessional frequency?arrow_forwardAn electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forwardAn alpha-particle ( m=6.641027kg , q=3.21019C ) travels in a circular path of radius 25 cm in a uniform magnetic field of magnitude 1.5 T. (a) What is the speed of the particle? (b) What is the kinetic energy in electron-volts? (c) Through what potential difference must the particle be accelerated in order to give it this kinetic energy?arrow_forward
- Q#02. A strip of copper 150um thick and 45cm wide is placed in a uniform magnetic field B of magnitude 0.85T, with B perpendicular to the strip. A current i = 2.3 mA is then sent to the strip such that a Hall potential difference V appears across the width of the strip. Calculate V. (the number of charge carriers per unit volume for copper is 8.47×108electrons/m³).arrow_forwardIn a Bainbridge mass spectrometer (Figure 1), ions pass through the electromagnetic field of a velocity selector and are then deflected by a magnetic field. Knowing that E = 3.1 × 105 V/m and that B1 = B2 = 0.32 T, calculate the difference of the positions on the photographic plate for the ions of charge q = e of the nitrogen isotopes of masses 14 u and 15 u. Note that 1 u = 1.661 × 10-27 kg.arrow_forwardAn ion source is producing 6Li ions, which have charge +e and mass 9.99 × 10-27 kg. The ions are accelerated by a potential difference of 12 kV and pass horizontally into a region in which there is a uniform vertical magnetic field of magnitude B = 1.4 T. Calculate the strength of the smallest electric field, to be set up over the same region, that will allow the 6Li ions to pass through undeflected.arrow_forward
- A pellet which holds a charge of 10 coulombs is moving upwards (+Y) and driven by an electric field in the same direction with a magnitude of 50 V/m. There is a magnetic field with a magnitude of 25 Tesla’s pointing downwards (-Y). How fast does the pellet need to be going for the magnetic force to cancel the electric force? Group of answer choices 0.5 m/s 2 m/s 4 m/s The forces will cancel out at any speed the pellet may be travelling In this case, the electric force cannot be canceled out by the magnetic forcearrow_forwardAlpha particles, each having a charge of +4qe and a mass of 6.64 × 10-27 kg, are accelerated in a uniform 0.5 T magnetic field to a final orbit radius of 0.5 m. The field is perpendicular to the velocity of the particles. What is the kinetic energy of an alpha particle in the final orbit?arrow_forwardA proton (carrying a positive charge) travels with speed 2.5x105 m/s to the right and enters between the two parallel charged plates. The electric field strength inside the two plates is 7.5x104 V/m. What magnetic field strength and direction will allow the proton to pass between the plates without being deflected? Vo +++ + O 1.9x1010 T, into the page O 1.9x1010 T, to the left 1.9x1010 T, out of page O 3.3 T, out of page O 3.3 T, to the left O 3.3 T, into the page O 0.30 T, out of page O 0.30 T, into the page O 0.30 T, to the leftarrow_forward
- A metal strip 7.00 cm long, 0.82 cm wide, and 0.71 mm thick moves with constant velocity (v) through a uniform magnetic field B = 1.10 mT directed perpendicular to the strip. A potential difference of 3.50 µV is measured across the width of the strip. What is the speed v? m/s V= What potential difference would be measured across the width of the strip if the velocity is 1.9 m/s? AV = μV xxx X X X X X X X X X X X X x X: W X X X X X-X length B X X xxarrow_forwardA beam of electrons with velocity vx = 5 x105 m/s is introduced into a uniform magnetic field Bz = 30 mTesla. An electric field Ey is applied perpendicular to both the initial velocity and the magnetic field. What value of electric field must be applied to leave the electron beam undeflected?arrow_forwardIn a velocity selector in a mass spectrometer the magnetic field has a strength of 0.270 T and the electric field has a strength of 6.97 ✕ 105 V/m. (a)Calculate the speed (in m/s) of the charge particles in the velocity selector. m/s (b)Calculate the voltage difference (in kV) between the plates supplying the electric field if the plates are separated by 2.10 cm.kV (c)Protons are used in the velocity selector and they travel in a direction moving from left to right as viewed on the screen. After passing through the velocity selector, they enter a region that has the magnetic field given above and the field points into the screen. Calculate the radius (in mm) of the circular trajectory for the protons. (Mass and charge of the proton are: 1.673 x 10-27 kg and 1.602 x 10-19 C, respectively). mm (d)Determine the direction in which the protons will curve when they enter the region that has only the magnetic field. Curved down toward the bottom of the screen Curved out of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY