Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 86P
To determine
To Find:
The time at which the flux through a turn in two inductors equals
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
58 In Fig. 30-47, R₁ = 8.0 92, R₂ = 10 22,
L₁ = 0.30 H, L₂= 0.20 H, and the ideal
battery has & = 6.0 V. (a) Just after
switch S is closed, at what rate is the
current in inductor 1 changing? (b)
When the circuit is in the steady state,
what is the current in inductor 1? modi
0000
L₁
R₁
R
E SONO OBORE
0000
L
Figure 30-47 Problem 58.
*77 SSM Two coils connected as
shown in Fig. 30-70 separately have inductances L1 and L2. TI
mutual inductance is M. (a) Show that this combination can be
placed by a single coil of equivalent inductance given by
Leg = L1 + L2 + 2M.
(b) How could the coils in Fig. 30-70 be reconnected to yield
equivalent inductance of
Leg = L + L2- 2M?
(This problem is an extension of Problem 47, but the requirem
that the coils be far apart has been removed.)
L1
M-
L9
N1
Ng
Figure 30-70 Problem 77.
A resistor and inductor are connected to a 9.0 V battery by a switch as shown. The moment the switch is
closed, current flows through the circuit. The resistor has a resistance of R = 220 N and the inductor has an
inductance of L= 135 mH.
(a) At time t = 0 the switch is closed and current flows through the circuit. The current increases with time
and eventually reaches a steady state value of imax- Calculate the maximum current imox in units of milliamps.
(b) Calculate the time constant, T, of the circuit, in seconds.
(c) Write an equation that relates the current as a function of time i(t) to the maximum current, imox Express
the equation in terms of imox and a, where a= -t/T.
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m, what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10-6 J?arrow_forwardAt time t = 0, a 12.0 V potential difference is suddenly applied to the leads of a coil of inductance 23.0 mH and a certain resistance R. At time t = 0.150 ms, the current through the inductor is changing at the rate of 280 A/s. Evaluate R.arrow_forwardc) The current follows in a charging inductor I(t) at time t seconds is given by: i(t) = 1,(1- e i) mA Where I, is the supply current and t= 30. 1. Evaluate the following The current flows in the inductor up to 3 significant figures after 24 seconds if the supply current I, = 75 mA The time t to 3 significant figures taken for current flows in the inductor to reach 40 mA if the supply current Is remains at 75 mA. i. ii. 2. Find an equation for the energy and evaluate it when L= 10 mH. d) The generated voltage of a turbine at timet seconds is given by: v(t) = Vssin(0.4nt +) Where Vs is generator voltage in Volts. Evaluate the following: iii. The voltage of the generator after 2.5 seconds if Vs = 70 V. The voltage at time t = 0 seconds to 3 significant figures The time when the generator first reaches maximum voltage, the period, the frequency, and the time displacement. iv. v. Your answer to this part of the task should be supported by suitably annotated graphical evidence to help…arrow_forward
- Two coils are placed close to each other and have a mutual inductance of 150 µH. The current through one coil is given by, I(t)=5sin(1000t). Estimate the time when the emf will be maximum on the second coil.arrow_forwardCurrent through an inductor(L= 0.1 H) is given by i = (t²-6t) A. Find the magnitude of the induced emf at t= 4.0 s.arrow_forward(a) A coil of conducting wire carries a current of i(t) = 16.0 sin(1.20 x 10³t), where i is in amperes and t is in seconds. A second coil is placed in close proximity to the first, and the mutual inductance of the coils is 160 pH. What is the peak emf (in V) in the second coil? V (b) What If? Which would lead to a larger peak emf in the second coil, a doubling of the mutual inductance or a doubling of the frequency with which the current in the first coil changes? O Doubling the mutual inductance would lead to a larger peak emf. O Doubling the frequency with which the current in the first coil changes would lead to a larger peak emf. O The two changes would each have the same effect.arrow_forward
- A 10.7-V battery, a 4.92-2 resistor, and a 10.1-H inductor are connected series. After the current in the circuit has reached its maximum value, calculate the following. (a) the power being supplied by the battery (b) the power being delivered to the resistor |w (c) the power being delivered to the inductor w (d) the energy stored in the magnetic field of the inductorarrow_forwardc) The current follows in a charging inductor I(t) at time t seconds is given by: i(t) = I,(1 – e7) mA Where I, is the supply current and t= 30. 1. Evaluate the following The current flows in the inductor up to 3 significant figures after 24 seconds if the supply current I, = 75 mA The time t to 3 significant figures taken for current flows in the inductor to reach 40 mA if the supply current Is remains at 75 mA. i. ii. 2. Find an equation for the energy and evaluate it when L= 10 mH.arrow_forwardSuppose insulated wire of length 5.28 m is coiled into a 0.015 0-m radius solenoid of length 0.060 0 m. Determine (a) the number of loops in the coil, (b) the inductance of the solenoid, and (c) the magnitude of the induced emf if the current is changing at a rate of 6.00X102 A/s.arrow_forward
- In the circuit shown in Fig, switch S1 has been closed for a long enough time so that the current reads a steady 3.50 A. Suddenly, switch S2 is closed and S1 is opened at the same instant. (a) What is the maximum charge that the capacitor will receive? (b) What is the current in the inductor at this time?arrow_forwardIf a current, i(t) flows an inductor with inductance 0.9 H, and induces a voltage VL(t)= 3 t√ (Volts) find the following: (a) Find the current across an inductor iL(t) as a function of time, if i(0)= 0 (A). iL(t)=arrow_forwardAn inductor is built using a circular coil that is l 0.50 m long, has radius R 10.0 cm, and consists of N 30 closely wound turns of wire. Treat the coil as an ideal solenoid. (a) Calculate the self-inductance of the coil. (b) At what rate do we need to change the current to produce a 1.5 V emf in the inductor? If this change is done at a constant rate and we reduce the current from Io of a time should we use for that? 3.8 A to zero, how longarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning