Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 30, Problem 49PQ
A proton and a helium nucleus (consisting of two protons and two neutrons) pass through a velocity selector and into a mass spectrometer. The radius of the proton’s circular path is rp. Find an expression for the radius r of the helium nucleus’s path in terms of rp. (You may assume the mass of a proton is roughly equal to the mass of a neutron, and the helium nucleus has the same speed as the proton.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an experimental setup where charged particles (electrons or protons) are first accelerated by an electric field and then injected into a region of constant magnetic field with a field strength of 0.45 T.
1. What is the potential difference, in volts, required in the first part of the experiment to accelerate electrons to a speed of 6.1 × 107 m/s?
2. Find the radius of curvature, in meters, of the path of a proton accelerated through this same potential after the proton crosses into the region with the magnetic field.
3. What is the ratio of the radii of curvature for a proton and an an electron traveling through this apparatus?
For this question, we have to consider an experimental setup where charged particles (electrons or protons) are first accelerated by an electric field and then injected into a region of constant magnetic field with a field strength of 0.55 T. What is the potential difference, in volts, required to accelerate electrons to a speed of 5.8 * 10^(7) ? Also what is the radius of curvature, in meters, of the path of a proton accelerated through this same potential after the proton crosses into the region with the magnetic field?
This is not a graded question
A mass spectrometer is a device that can sort ions based on their mass to charge ratio.
Given the incoming particle is a proton with a horizontal speed of 1.5x108 m/s, and the magnetic field strength is 1.3 T, what would the radius of the proton's path be, in metres?
Chapter 30 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 30.2 - Prob. 30.1CECh. 30.3 - Prob. 30.2CECh. 30.4 - Prob. 30.3CECh. 30.8 - Cosmic rays are high-energy charged particles...Ch. 30.9 - The Earths Van Allen belts (Fig. 30.34) are a...Ch. 30.10 - Prob. 30.6CECh. 30.10 - Prob. 30.7CECh. 30.12 - Prob. 30.8CECh. 30 - A yoga teacher tells her students to imagine their...Ch. 30 - Prob. 2PQ
Ch. 30 - Prob. 3PQCh. 30 - Prob. 4PQCh. 30 - Prob. 5PQCh. 30 - Copy Figure P30.6 and sketch the magnetic field...Ch. 30 - Prob. 7PQCh. 30 - Prob. 9PQCh. 30 - Figure P30.10 shows a circular current-carrying...Ch. 30 - Figure P30.11 shows three configurations of wires...Ch. 30 - Review A proton is accelerated from rest through a...Ch. 30 - An electron moves in a circle of radius r at...Ch. 30 - One common type of cosmic ray is a proton...Ch. 30 - Prob. 15PQCh. 30 - Prob. 16PQCh. 30 - Prob. 17PQCh. 30 - A Two long, straight, parallel wires are shown in...Ch. 30 - Prob. 19PQCh. 30 - Two long, straight, parallel wires carry current...Ch. 30 - Prob. 21PQCh. 30 - Two long, straight wires carry the same current as...Ch. 30 - Prob. 23PQCh. 30 - A wire is bent in the form of a square loop with...Ch. 30 - Prob. 25PQCh. 30 - A Derive an expression for the magnetic field...Ch. 30 - Prob. 27PQCh. 30 - Prob. 28PQCh. 30 - Prob. 29PQCh. 30 - Prob. 30PQCh. 30 - Prob. 31PQCh. 30 - Prob. 32PQCh. 30 - Prob. 33PQCh. 30 - Prob. 34PQCh. 30 - Normally a refrigerator is not magnetized. If you...Ch. 30 - Prob. 36PQCh. 30 - Prob. 37PQCh. 30 - The magnetic field in a region is given by...Ch. 30 - Prob. 39PQCh. 30 - Prob. 40PQCh. 30 - Prob. 41PQCh. 30 - The velocity vector of a singly charged helium ion...Ch. 30 - Prob. 43PQCh. 30 - Can you use a mass spectrometer to measure the...Ch. 30 - In a laboratory experiment, a beam of electrons is...Ch. 30 - Prob. 46PQCh. 30 - Prob. 47PQCh. 30 - Prob. 48PQCh. 30 - A proton and a helium nucleus (consisting of two...Ch. 30 - Two ions are accelerated from rest in a mass...Ch. 30 - Prob. 51PQCh. 30 - Prob. 52PQCh. 30 - A rectangular silver strip is 2.50 cm wide and...Ch. 30 - For both sketches in Figure P30.56, there is a...Ch. 30 - A 1.40-m section of a straight wire oriented along...Ch. 30 - Professor Edward Ney was the founder of infrared...Ch. 30 - Prob. 59PQCh. 30 - A wire with a current of I = 8.00 A directed along...Ch. 30 - Prob. 61PQCh. 30 - The triangular loop of wire shown in Figure P30.62...Ch. 30 - Prob. 63PQCh. 30 - Consider the wires described in Problem 63. Find...Ch. 30 - Prob. 65PQCh. 30 - Prob. 66PQCh. 30 - A Three parallel current-carrying wires are shown...Ch. 30 - Prob. 68PQCh. 30 - Prob. 69PQCh. 30 - Prob. 70PQCh. 30 - Prob. 71PQCh. 30 - Prob. 72PQCh. 30 - A circular coil 15.0 cm in radius and composed of...Ch. 30 - Prob. 74PQCh. 30 - Prob. 75PQCh. 30 - Prob. 76PQCh. 30 - Prob. 77PQCh. 30 - Two long, straight, current-carrying wires run...Ch. 30 - Prob. 79PQCh. 30 - Prob. 80PQCh. 30 - Prob. 81PQCh. 30 - Prob. 82PQCh. 30 - Two infinitely long current-carrying wires run...Ch. 30 - Prob. 84PQCh. 30 - Prob. 85PQCh. 30 - Prob. 86PQCh. 30 - A charged particle with charge q and velocity...Ch. 30 - Prob. 88PQCh. 30 - Prob. 89PQCh. 30 - A mass spectrometer (Fig. 30.40, page 956)...Ch. 30 - Three long, current-carrying wires are parallel to...Ch. 30 - Prob. 92PQCh. 30 - A current-carrying conductor PQ of mass m and...Ch. 30 - A proton enters a region with a uniform electric...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Can you use a mass spectrometer to measure the mass of a proton? Can you use a mass spectrometer to measure the mass of a neutron?arrow_forwardA simple mass spectrometer may include an electron ionization (EI) source and magnetic sector mass analyzer. In this type of instrument, singly charged ions are produced and accelerated through the slit to the analyzer by applying high potentials to accelerator plates. If an ion with mass 339 amu and charge z = 1 is accelerated by a potential of 6500 V, what is its kinetic energy (in J)? Note: The following information may be useful for solving the two parts of this problem. 1 amu = 1.66 x 10-27 kg Electronic charge, e = 1.602 x 10-19 C 1J = 1 kg m/s² 1 V = 1 J/C Submit Answer What is the velocity of the ion?arrow_forwardA cyclotron is used to produce a beam of high-energy deuterons that then collide with a target to produce radioactive isotopes for a medical procedure. Deuterons are nuclei of deuterium, an isotope of hydrogen, consisting of one neutron and one proton, with total mass 3.34×10−27kg. The deuterons exit the cyclotron with a kinetic energy of 6.10 MeV . What is the speed of the deuterons when they exit? If the magnetic field inside the cyclotron is 1.25 T, what is the diameter of the deuterons' largest orbit, just before they exit? If the beam current is 380 μA how many deuterons strike the target each second?arrow_forward
- A cyclotron is used to produce a beam of high-energy deuterons that then collide with a target to produce radioactive isotopes for a medical procedure. Deuterons are nuclei of deuterium, an isotope of hydrogen, consisting of one neutron and one proton, with total mass 3.34 x 10-27 kg. The deuterons exit the cyclotron with a kinetic energy of 5.00 MeV.a. What is the speed of the deuterons when they exit?b. If the magnetic field inside the cyclotron is 1.25 T, what is the diameter of the deuterons’ largest orbit, just before they exit?c. If the beam current is 400 μA, how many deuterons strike the target each second?arrow_forwardkg. Consider the mass spectrometer shown schematically in the figure below. The electric field between the plates of the velocity selector is 945 V/m, and the magnetic fields in both the velocity selector and the deflection chamber have magnitudes of 0.900 T. Calculate the radius r of the path for a singly charged ion with mass m = 2.06 x 10-26 mm X x P x r Bo, in X x X X X X Photographic plate Bin Velocity selector x x x x + + 1₂ E x x x x X--- --- V X X x || 9 XA I x I x X X x x x X Xarrow_forwardA beam of a particles (helium nuclei) is used to treat a tumor located 11.1 cm inside a patient. To penetrate to the tumor, the a particles must be accelerated to a speed of 0.558c, where c is the speed of light. (Ignore relativistic effects.) The mass of an a particle is 4.003 u and its charge is +2e. The cyclotron used to accelerate the beam has radius 1.50 m. What is the magnitude of the magnetic field? The mass of a proton is 1.6605×10-27 kg/u.arrow_forward
- An alpha particle and an electron enter inside a magnetic field and move in the circles of the same size but in opposite directions. Find the velocity of alpha particle if the velocity of the electron is 22.9 x 106 m/s. Given that the mass of alpha particle is 8000 times the mass of electron and the charge of electron is half of the charge of alpha particle. Answer with two decimal places. Answer: Next pa Jump to... =hi (Log out) EC 1arrow_forwardConsider the mass spectrometer shown schematically in the figure below. The electric field between the plates of the velocity selector is 925 V/m, and the magnetic fields in both the velocity selector and the deflection chamber have magnitudes of 0.950 T. Calculate the radius r of the path for a singly charged ion with mass m = 2.20 x 10 -26 kg. mm P Photographic plate Bin Velocity selector Bo, in x x x x X x +1 + + + + x E x x x X x x X_ ↑> XA XA x XA x XA I I I I x x x x x x x xarrow_forwardA negative charge of q = -2.2 * 10-17 C and m = 2.3 * 10-26 kg enters a magnetic field B = 1.9 T with initial velocity v = 270 m/s as shown in the attached image. The magnetic field points into the screen. Express the radius R, of the circular motion in terms of the centripetal acceleration a and the speed v. Calculate the numerical value of the radius R in meters.arrow_forward
- Q#02. A strip of copper 150um thick and 45cm wide is placed in a uniform magnetic field B of magnitude 0.85T, with B perpendicular to the strip. A current i = 2.3 mA is then sent to the strip such that a Hall potential difference V appears across the width of the strip. Calculate V. (the number of charge carriers per unit volume for copper is 8.47×108electrons/m³).arrow_forwardA/an 8-milligram, 3-millicoulomb charge is fired to a uniform magnetic field via a 290-volt potential difference which acts as an accelerator to the charge. If the initial velocity of the object is 46 kilometers per second, determine the magnitude of the magnetic field (measured in tesla) so that the radius of curvature of the object is 4 meters. Express your answers accurate to four decimal places, whenever applicable.arrow_forwardA proton is moving under the combined influence of an electric field (E = 2569 V/m) and a magnetic field (B = 2.45 T), as shown in the figure. Assuming the proton is moving in the direction shown in the figure with speed 255 m/s at the instant it enters the crossed fields, what is the acceleration of the proton? (units are in m/s^2)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY