Elements Of Electromagnetics
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 46P
To determine

To verify the Stokes’s theorem for the given region.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The vector field F is 2ρzaρ+3zsinϕaϕ4ρcosϕaz.

The open surface is defined by the parameters, z=1,0<ρ<2,0<ϕ<45°.

Calculation:

According to the Stokes’s theorem,

  LFdl=S(×F)dS

Calculate LFdl along the contour as shown in the below figure.

Elements Of Electromagnetics, Chapter 3, Problem 46P

  LFdl=PFdl+QFdl+RFdl        (I)

For the segment P, z=1 and dl=dρaρ.

Therefore,

  F=2ρzaρ+3zsinϕaϕ4ρcosϕazF=2ρ(1)aρ+3(1)sinϕaϕ4ρcosϕazF=2ρaρ+3sinϕaϕ4ρcosϕaz

Calculate the integral (PFdl) in the segment P using the relation.

  PFdl=02(2ρaρ+3sinϕaϕ4ρcosϕaz)(dρaρ)PFdl=022ρdρPFdl=2[ρ22]02PFdl=4

For segment Q, ρ=2,z=1anddl=ρdϕaϕ.

Therefore,

  F=2ρzaρ+3zsinϕaϕ4ρcosϕazF=2(2)(1)aρ+3(1)sinϕaϕ4(2)cosϕazF=4aρ+3sinϕaϕ8cosϕaz

Calculate the integral (QFdl) in the segment Q using the relation.

  QFdl=045°(4aρ+3sinϕaϕ8cosϕaz)(ρdϕaϕ)QFdl=045°3ρsinϕdϕQFdl=3ρ[cosϕ]045°QFdl=3×2[12+1]

  QFdl=1.7573

For segment R, ϕ=45°,z=1anddl=dρaρ.

Therefore,

  F=2ρzaρ+3zsinϕaϕ4ρcosϕazF=2ρ(1)aρ+3(1)sin(45°)aϕ4ρcos(45°)azF=2ρaρ+2.12aϕ2.82az

Calculate the integral (RFdl) in the segment R using the relation.

  QFdl=20(2ρaρ+2.12aϕ2.82az)(dρaρ)QFdl=202ρdρQFdl=2[ρ22]20QFdl=4

Calculate the value of integral (LFdl) using the relation.

  LFdl=PFdl+QFdl+RFdlLFdl=4+1.75734LFdl=1.7573        (I)

Calculate the value of the curl (×F) using the relation.

  ×F=[1ρ(Fz)ϕFϕz]aρ+[FρzFzρ]aϕ+1ρ[(ρFϕ)ρFρϕ]az×F=[[1ρ(4ρcosϕ)ϕ(3zsinϕ)z]aρ+[(2ρz)z(4ρcosϕ)ρ]aϕ+1ρ[(ρ×3zsinϕ)ρ(2ρz)ϕ]az]×F=[sinϕ]aρ+[2ρ+4cosϕ]aϕ+[3zsinϕρ]az

Now calculate the integral (S(×F)dS) using the relation.

  S(×F)dS=S([sinϕ]aρ+[2ρ+4cosϕ]aϕ+[3zsinϕρ]az)(ρdϕdρaz)S(×F)dS=S3zsinϕdϕdρS(×F)dS=ρ=02ϕ=045°(3zsinϕdϕdρ)z=1S(×F)dS=3[cosϕ]045°[ρ]02

  S(×F)dS=1.758        (II)

From Equations (I) and Equation (II).

  LFdl=S(×F)dS

Thus, the Stokes’s theorem is verified.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A direct extrusion operation produces the cross section shown in Fig. (2) from an aluminum billet whose diameter 160 mm and length - 700 mm. Determine the length of the extruded section at the end of the operation if the die angle -14° 60 X Fig. (2) Note: all dimensions in mm.
For hot rolling processes, show that the average strain rate can be given as: = (1+5)√RdIn(+1)
: +0 usão العنوان on to A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2R. Take: -9.81 mis ۲/۱ ostrar

Chapter 3 Solutions

Elements Of Electromagnetics

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Diffusion in Solids; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=K_1QmKJvNjc;License: Standard youtube license