Concept explainers
You can use any coordinate system you like to solve a projectile motion problem. To demonstrate the truth of this statement, consider a ball thrown off the top of a building with a velocity
Trending nowThis is a popular solution!
Chapter 3 Solutions
College Physics
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Fundamentals of Physics Extended
Organic Chemistry (8th Edition)
Biology: Concepts and Investigations
Essentials of Human Anatomy & Physiology (12th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- Answer the following questions for projectile motion on level ground assuming negligible air resistance, with the initial angle being neither 0 nor 90 : (a) Is the acceleration ever zero? (b) Is the vector v ever parallel or antiparallel to the vector a? (c) Is the vector v ever perpendicular to the vector a? If so, where is this located?arrow_forwardAt t = 0, a particle moving in the xy plane with constant acceleration has a velocity of vi=(3.00i2.00j)m/s and is at the origin. At t = 3.00 s, the particles velocity is vf=(9.00i+7.00j)m/s. Find (a) the acceleration of the particle and (b) its coordinates at any time t.arrow_forwardVector B has x, y, and z components of 4.00, 6.00, and 3.00 units, respectively. Calculate (a) the magnitude of B and (b) the angle that B makes with each coordinate axis.arrow_forward
- A particle initially located at the origin has an acceleration of a=3.00jm/s2 and an initial velocity of vi=5.00im/s. Find (a) the vector position of the particle at any time t, (b) the velocity of the particle at any time t, (c) the coordinates of the particle at t = 2.00 s, and (d) the speed of the particle at t = 2.00 s.arrow_forwardWhat is the y component of the vector (3i8k) m/s? (a) 3 m/s (b) 8 m/s (c) 0 (d) 8 m/s (e) none of those answersarrow_forwardOlympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If you are standing on the summit, with what Initial velocity would you have to fire a projectile from a cannon horizontally to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7m/s2 .arrow_forward
- If a projectile is fired from the origin of the coordinate system with an initial velocity υ0 and in a direction making an angle α with the horizontal, calculate the time required for the projectile to cross a line passing through the origin and making an angle β < α with the horizontal.arrow_forwardAt a football game, imagine the line of scrimmage is the y-axis. A player, starting at the y-axis, runs 7.50 yards, back (in the −x-direction), then 15.0 yards parallel to the y-axis (in the −y-direction). He then throws the football straight downfield 50.0 yards in a direction perpendicular to the y-axis (in the +x-direction). What is the magnitude of the displacement (in yards) of the ball?What if? The receiver that catches the football travels 65.0 additional yards at an angle of 45.0° counterclockwise from the +x-axis away from the quarterback's position and scores a touchdown. What is the magnitude of the football's total displacement (in yards) from where the quarterback took the ball to the end of the receiver's run?arrow_forwardAnswer a, b, and c.arrow_forward
- Consider the following scenario. A pilot is steering a plane in the direction N 45° W at an air-speed (speed still in air) of 150 mi/h. A wind is blowing in the direction S 30° E at a speed of 34 mi/h. Set up the coordinate axes so that north is the positive y-direction and west is the negative x-direction. With respect to the still air, write a vector that represents the velocity of the plane and a vector that represents the velocity of the wind. plane Give a velocity vector of the plane relative to ground. (Round your values to three decimal places.) V=Vane + wind" Find vl. (Round your answer to one decimal place.) |v| Find the true course and the ground speed (in mi/h) of the plane. (Round your answers to one decimal place.) true course N x w ground speed x mi/harrow_forwardA man goes for a walk, starting from the origin of an xyz coordinate system, with the xy plane horizontal and the x axis eastward. Carrying a bad penny, he walks 1300 m east, 2200 m north, and then drops the penny from a cliff 410 m high. (a) In unit-vector notation, what is the displacement of the penny from start to its landing point? (b) When the man returns to the origin, what is the magnitude of his displacement for the return trip?arrow_forwardThe figure shows the path taken by a drunk skunk over level ground, from initial point i to final point f. The angles are 0, - 32.0°, e2 = 49.0°, and e3 = 84.0°, and the distances are d= 4.80 m, d2 = 7.30 m, and d3 = 10.0 m. What are the (a) magnitude and (b) angle of the skunk's displacement from i to f? Give the angle as a positive (counterclockwise) or negative (clockwise) angle of magnitude less than 180°, measured from the +x direction. dy dg (a) Number 9.853 Units (b) Number -123.8 Units (degrees)arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning