The Science and Engineering of Materials (MindTap Course List)
7th Edition
ISBN: 9781305076761
Author: Donald R. Askeland, Wendelin J. Wright
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.89P
(a)
To determine
Whether BeO is expected to have the cesium chloride, zincblende or sodium chloride structure should be identified, and the lattice parameter.
(b)
To determine
The density.
(c)
To determine
The packing factor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the answer should be equal to 0.842
For some reason 0.68 is not accepted as the answer.
Question 2. HfO2 has the CaF2 crystal structure. Calculate the density of HfO2 in kg/m³ if the ionic radii are
Hf* = 0.083 nm and O²- = 0.132 nm.
Chapter 3 Solutions
The Science and Engineering of Materials (MindTap Course List)
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - What is a polycrystalline material?Ch. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Aluminum foil used to package food isapproximately...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Thoria or thonrium dioxide can be describedas an...Ch. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Determine the planar density and packing fraction...Ch. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - MgO, which has the sodium chloride structure, has...Ch. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99PCh. 3 - Prob. 3.100PCh. 3 - Prob. 3.101DPCh. 3 - You want to design a material for making kitchen...Ch. 3 - Prob. 3.103CPCh. 3 - Prob. 3.104CPCh. 3 - Prob. 3.1KP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- = 0.4961 nm and c = The unit cell for Cr2O3 has hexagonal symmetry with lattice parameters a 1.360 nm. If the density of this material is 5.22 g/cm³, calculate its atomic packing factor. For this computation assume ionic radii of 0.062 nm and 0.140 nm, respectively for Cr³+ and O²¯.arrow_forwardVanadium (V) has a BCC crystal structure. The atomic radius is R = 0.132 nm and the atomic mass is M = 50.94 g/mole. What is the density of Vanadium in g/mm3? Given: Avogadro’s Number NA = 0.6023 × 1024 (atoms/mole) Select one: a. 1.5 b. 0.021 c. 0.011 d. 0.0087 e. 0.00597arrow_forwardPLS GIVE A FULL HANDWRITTEN SOLUTIONarrow_forward
- 3. Molybdenum has a BCC crystal structure, an atomic radius of 0.1363 nm, and an atomic weight of 95.94 g/mol. Compute its theoretical density.arrow_forwardpls provide full calculationsarrow_forwardEstimate the density of platinum and lead from their lattice parameters at room temperature. Both are FCC. Compare the theoretical density with experimental values. Which is closer? Why? For platinum A=192.09, Avogadro number =6.02x1043, a=3.9239 Angstrom. Experimental density of Pt = 21.47. For lead A=207.2, and a=4.9502Angstrom.arrow_forward
- pls provide full written solutionarrow_forward10. Lithium crystallizes in a bcc structure with an edge length of 3.509 Å. Calculate its density. What is the approximate metallic radius of lithium in picometers? (m- 11. is determined by tracing around the dislocation plane to form a circuit and counting the number of the lattice vectors for each side.arrow_forwardb. Given that Na = 6.022x1023 atoms/mol. Calculate the theoretical density of nickel. Show your calculations.arrow_forward
- 1. Is there a difference in packing (coordination number) between these two types (FCC and HCP) of structures? 2. Look at the two structures. A small difference in arrangement of atoms causes a dramatic difference in the properties of FCC ductile metals and HCP brittle metals. Can you see it? Try to draw the differences (You can draw the 3-layers separately):arrow_forwardSilver Ag has the fcc crystal structure as shown in the figure below. Determine its atomic packing factor APF? Given: The radius of Germanium: r(Ag)= 0.144 nm.  Select one: a. 0.14 b. 0.34 c. 0.68 d. 0.12 e. 0.4 f. 0.51 g. 0.74 h. 0.21arrow_forwardThe density of a sample of HCP beryllium is 1.844 g/cm 3 , and the lattice parameters are a 0 = 0.22858 nm and c 0 = 0.35842 nm. Calculate (a) the fraction of the lattice points that contains vacancies: and (b) the total number of vacancies in a cubic centimetre of Bearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning