Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.16P
To determine
The photon emission rate, per second from the mercury-vapor ultraviolet lamp of 25 watts with a 0.1% electrical energy input appearing as a UV
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The energy of a photon is 52.6 eV. What is the wavelength in
of the photon? Assume 3 sig figs. 1nm = 10-⁹ m
nanometers
Suppose a star with radius 8.69 x 10° m has a peak wavelength of 684 nm in the spectrum of its emitted radiation.
(a) Find the energy of a photon with this wavelength.
0.029e-17
J/photon
(b) What is the surface temperature of the star?
4274.3
X K
(c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1).
1.9934e17
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each
step carefully. W
(d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star.
X photons/s
An infrared photon has a frequency of 8.3 E12 Hz. What is the energy of this photon, expressed in meV (milli electron-volt)?
I tried the formula E=hf => E= (6.63E-34)(8.3E12) = 5.5029E-21 and then converted to meV as 3.43E22, but it's still wrong.
Chapter 3 Solutions
Introduction To Health Physics
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Calculate the current due to the hydrogen electron...Ch. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - If 9 g of NaC1 were dissolved in 1 L of water,...Ch. 3 - Prob. 3.24PCh. 3 - What is the binding energy of the last neutron in...Ch. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - What is the binding energy of the last neutron in...Ch. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Calculate the number of photoelectrons per second that are ejected from a 1.00-mm2 area of sodium metal by a 500-nm radiation with intensity I .30kW/m2 (the intensity of sunlight above Earth’s atmosphere). (b) Given the work function of the metal as 2.28 eV, what power is carried away by these photoelectrons?arrow_forwardWater absorbs infrared radiation with wavelengths near 4.55 mm. Suppose this radiation is absorbed by the water and converted to heat. A 2.25-L sample of water absorbs infrared radiation, and its temperature increases from 17.0°C to 35.0°C. How many photons of this radiation are used to heat the water?arrow_forwardAn X-ray photon with a wavelength of 0.999 nmnm strikes a surface. The emitted electron has a kinetic energy of 990 eV. What is the binding energy of the electron in kJ/molkJ/mol? [Note that KEKE = 12mv212mv2 and 1 electron volt (eVeV) = 1.602×10−19J1.602×10−19J.] Express your answer using three significant figures.arrow_forward
- When photons pass through matter, the intensity I of the beam (measured in watts per square meter) decreases exponentially according to I = I0e-μxwhere I is the intensity of the beam that just passed through a thickness x of material and I0 is the intensity of the incident beam. The constant μ is known as the linear absorption coefficient, and its value depends on the absorbing material and the wavelength of the photon beam. This wavelength (or energy) dependence allows us to filter out unwanted wavelengths from a broad-spectrum x-ray beam.(a) Two x-ray beams of wavelengths λ1 and λ2 and equal incident intensities pass through the same metal plate. Show that the ratio of the emergent beam intensities is (I2)/(I1) = e-(μ2 - μ1)x(b) Compute the ratio of intensities emerging from an aluminum plate 1.00 mm thick if the incident beam contains equal intensities of 50 pm and 100 pm x-rays. The values of μ for…arrow_forwardCompare the energies of photons emitted by two radio stations, operating at 92 MHz (FM) and 1500 kHz (MW)? A 7.25x10-s M solution of potassium permanganate has a transmittance of 44.1% when measured in a 2.10 cm cell at a wavelength of 525 nm. Calculate a. the absorbance of this solution and b. the molar absorptivity of KMNO4arrow_forwardThe average threshold of dark-adapted (scotopic) vision is 4.00 x 10-11 W/m? at a central wavelength of 500 nm. If light having this intensity and wavelength enters the eye and the pupil is open to its maximum diameter of 8.50 mm, how many photons per second enter the eye?arrow_forward
- Photons of a certain infrared light have an energy of 1.05 10-19 J. (a) What is the frequency of this IR light? (b) Use ? = c/f to calculate its wavelength in nanometers.arrow_forwardWhat is the wavelength of a 1.40-eV photon?arrow_forwardA 2.8-cm-diameter metal sphere is glowing red, but a spectrum shows that its emission spectrum peaks at an infrared wavelength of 2.0 μm. Assume e = 1 How much power does the sphere radiate? Express your answer to two significant figures and include the appropriate units.arrow_forward
- A housing attached to a microprocessor uses radiator fins to get rid of excess heat. If the largest amount of radiation emitted by the fins has a frequency of 186.20 THz, what is the associated wavelength? marrow_forward1. A point source of Co-60 gamma rays emits qual number of photons of 1.17 and 1.33 MeV, giving a flux density of 5.7 × 10⁹ photons/cm² sec at a specified location. What is the energy flux density there, expressed in erg/cm² sec and in J/m² min?arrow_forwardYou are using a radiometer to observe the thermal radi- ation from an object that is heated to maintain its tem- perature at 1278 K. The radiometer records radiation in a wavelength interval of 12.6 nm. By changing the wave- length at which you are measuring, you set the radiome- ter to record the most intense radiation emission from the object. What is the intensity of the emitted radiation in this interval?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax