Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.13P
To determine
Temperatures of the copper wire after 2 s, 10 s, 1 min
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylindrical vessel (D=98,4 cm) is filled with water (ρ=1000 kg/m3, c=4.187 kJ/kg.K) to a depth of 113,64 cm. The initial temperature of the water is 15°C. Determine the time [min] required to increase the water temperature to 50°C when it is immersed into tank, filled with oil at 105°C. (NOTE: The overall heat transfer coefficient between the oil and the water is 284 W/m2.K. The surface area is 4.2 m2.)
The time evolution of the temperature of an object follows the Newton's cooling laws
dT
dx
=
-k(T - Ts),
where the term k = 2.2 (1/s) is the heat transfer constant, and Tg = 25.6° C is the ambient temperature.
The initial temperature of the object at time t = = 0 is T(t = 0) = 200°C.
°C
Use the Euler's method, and a time step of h=0.2s, calculate:
When t = = 0.2s, T =
°C
When t 1s, T =
For a water flow over a steel surface, the temperature of water at a specific location was found to change
with the vertical distance from the surface (y) up to a distance of 0.015 m as
T(y) = 60 + 20y + tan(y),
where temperature is in °C and y is in cm. The surface temperature and ambient temperature was
measured as 60°C and 105°C, respectively. The thermal conductivity of steel and water are, respectively,
48 W/m-K and 0.6 W/m-K. What is the local convection coefficient at this location?
Chapter 3 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 3 - Consider a flat plate or a plane wall with a...Ch. 3 - 3.2 High-strength steel is required for use in...Ch. 3 - Prob. 3.3PCh. 3 - 3.5 In a ball-bearing production facility, steel...Ch. 3 - A 0.6-cm diameter mild steel rod at 38C is...Ch. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - 3.9 The heat transfer coefficients for the flow of...Ch. 3 - 3.10 A spherical shell satellite (3-m-OD,...Ch. 3 - Prob. 3.11P
Ch. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - 3.14 A thin-wall cylindrical vessel (1 m in...Ch. 3 - A thin-wall jacketed tank heated by condensing...Ch. 3 - 3.16 A large, 2.54-cm.-thick copper plate is...Ch. 3 - 3.17 A 1.4-kg aluminum household iron has a 500-W...Ch. 3 -
3.28 A long wooden rod at with a 2.5-cm-OD is...Ch. 3 - A mild-steel cylindrical billet 25 cm in diameter...Ch. 3 - Prob. 3.37PCh. 3 -
3.38 An egg, which for the purposes of this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1/ Consider a 4-m-high, 6-m-wide, and 0.3-m-thick brick wall whose thermal conductivity is k = 0.8 W/m °C. On a certain day, the temperatures of the inner and the outer surfaces of the wall are measured to be 14°C and 6°C, respectively. Determine the rate of heat loss through the wall on that day.arrow_forwardHeat Transferarrow_forwardQ1: Consider a wall heated by convection on one side and cooled by convection on the other side. Show that the heat-transfer rate through the wall is T1-T2 1/h A+A/kA+ 1/h2A Where T; and T; are the fluid temperatures on each side of the wall and h, and h; are the corresponding heat-transfer coefficients.arrow_forward
- In a double-glazed window, the panes of glass are separated by 1.0 cm and the space is filled with a gas with thermal conductivity 24 mW K−1 m−1. What is the rate of transfer of heat by conduction from the warm room (28 °C) to the cold exterior (−15 °C) through a window of area 1.0 m2? You may assume that one pane of glass is at the same temperature as the inside and the other as the outside. What power of heater is required to make good the loss of heat?arrow_forwardA J- type thermocouple is used to measure the temperature in a heating process. The length of the bare material is 120mm and thickness is 1.5mm. Find the time constant of the bare material. уре of Thermo-Material K ( Q W/m- (kg/m3) k) IS |(J/Kg- oc) couple J Iron- Constantan 46 8535 345 K Kromel- Alumel 35 8738 380 IT Copper- Constantan 160 8902 316 Cromel - Contantan 33 8825 336 Nicrocil- Nisil 34 8702 376 Pt(30%)Rhodium - 19 15718 56 Pt(6%)Rhodium Platinum(13%)Rodium, 55 16628 99 - Platinum Platinum(10%)Rodium 52.9 16745 99 Platinum Time constant of the bare material is, T=arrow_forwardHow long should it take to boil an egg? Model the egg as a sphere with radius of 2.3 cm that has properties similar to water with a density of = 1000 kg/m3 and thermal conductivity of k = 0.606 Watts/(mC) and specific heat of c = 4182 J/(kg C). Suppose that an egg is fully cooked when the temperature at the center reaches 70 C. Initially the egg is taken out of the fridge at 4 C and placed in the boiling water at 100 C. Since the egg shell is very thin assume that it quickly reaches a temperature of 100 C. The protein in the egg effectively immobilizes the water so the heat conduction is purely conduction (no convection). Plot the temperature of the egg over time and use the data tooltip in MATLAB to make your conclusion on the time it takes to cook the egg in minutes.arrow_forward
- Determine conductive resistance (in K/W) of a 80 m^2 plane wall composed of 2 layers: Layer 1: brick, thickness δ1 = 620 mm, thermal conductivity λ1 = 0.310 W/(m.K) Layer 2: EPS, thickness δ2 = 52 mm, thermal conductivity λ2 = 0.026 W/(m.K) Evaluate the heat loss through this wall if indoor temperature is 22 C and outdoor temperature is -18 C.arrow_forwardSuppose that as a body cools, the temperature of the surrounding medium increases because it completely absorbs the heat being lost by the body. Let T(t) and Tm (t) be the temperatures of the body and the medium at time t, respectively. If the initial temperature of the body is T1 and the initial temperature of the medium is T2, then it can be shown in this case that Newton's law of cooling is dT/dt = k(T - Tm ), k 0 is a constant. (a) The foregoing DE is autonomous. Determine the limiting value of the temperature T(t) as t→ o What is the limiting value of Tm (t) as t→o? (b) Verify your answers in part (a) by actually solving the differential equation. (c) Discuss a physical interpretation of your answers in part (a).arrow_forwardWhat’s the correct answer for this please ?arrow_forward
- What’s the correct answer for this please ?arrow_forwardWhat’s the correct answer for this please ?arrow_forwardDuring daytime, the outside air temperature is measured at Ta = 35 °C. A house with an inside temperature of Tin = 20 °C is separated from the outside by a brick wall as shown in Figure 1. i Briefly discuss what will happen in terms of heat transfer process and the mode of heat transfer involved. ii. Identify the parameters that affect the rate of heat transfer in this case T. = T = 35°C 20°C Brick wallarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license