Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.13P
To determine
Temperatures of the copper wire after 2 s, 10 s, 1 min
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a water flow over a steel surface, the temperature of water at a specific location was found to change
with the vertical distance from the surface (y) up to a distance of 0.015 m as
T(y) = 60 + 20y + tan(y),
where temperature is in °C and y is in cm. The surface temperature and ambient temperature was
measured as 60°C and 105°C, respectively. The thermal conductivity of steel and water are, respectively,
48 W/m-K and 0.6 W/m-K. What is the local convection coefficient at this location?
Q1: Consider a wall heated by convection on one side and cooled by convection
on the other side. Show that the heat-transfer rate through the wall is
T1-T2
1/h A+A/kA+ 1/h2A
Where T; and T; are the fluid temperatures on each side of the wall and h, and
h; are the corresponding heat-transfer coefficients.
In a double-glazed window, the panes of glass are separated by 1.0 cm and the space is filled with a gas with thermal conductivity 24 mW K−1 m−1. What is the rate of transfer of heat by conduction from the warm room (28 °C) to the cold exterior (−15 °C) through a window of area 1.0 m2? You may assume that one pane of glass is at the same temperature as the inside and the other as the outside. What power of heater is required to make good the loss of heat?
Chapter 3 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 3 - Consider a flat plate or a plane wall with a...Ch. 3 - 3.2 High-strength steel is required for use in...Ch. 3 - Prob. 3.3PCh. 3 - 3.5 In a ball-bearing production facility, steel...Ch. 3 - A 0.6-cm diameter mild steel rod at 38C is...Ch. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - 3.9 The heat transfer coefficients for the flow of...Ch. 3 - 3.10 A spherical shell satellite (3-m-OD,...Ch. 3 - Prob. 3.11P
Ch. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - 3.14 A thin-wall cylindrical vessel (1 m in...Ch. 3 - A thin-wall jacketed tank heated by condensing...Ch. 3 - 3.16 A large, 2.54-cm.-thick copper plate is...Ch. 3 - 3.17 A 1.4-kg aluminum household iron has a 500-W...Ch. 3 -
3.28 A long wooden rod at with a 2.5-cm-OD is...Ch. 3 - A mild-steel cylindrical billet 25 cm in diameter...Ch. 3 - Prob. 3.37PCh. 3 -
3.38 An egg, which for the purposes of this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The thermal conductivity of a fluid is 0.09 BTU/ft-h-F having a kinematic viscosity of 0.0215 ft2/h. If the density and specific heat at constant pressure are 53 lbm/ft3 and 0.43 BTU/lb-F, respectively, determine the Prandtl number. Correct Answer: 5.44 ± 0.1arrow_forwardA current of 200 A is passed through a stainless steel wire (k = 19 W/m.K) 3 mm in diameter. The resistivity of the steel is 70x10^(-6) ohm.cm, and the length of the wire is 1 m. The wire is submerged in a liquid at 383 K and experiences a convection heat transfer coefficient of 4 kW/m^2. K. The center temperature (in K) of the wire isarrow_forwardThe temperature of a gas stream is measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere. Take the junction’s properties as: k of 32 W/m K, density of 8.2 kg/m^3, c of 300 J/Kg K. On its surface, the overall heat transfer coefficient is 200 W/m^2 K. Neglect any conduction loss from the sphere to other parts of the thermocouple. Create a plot of measurement error as a function of time for the thermocouple.arrow_forward
- The temperature of a gas stream is measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere. Take the junction’s properties as: k of 32 W/m K, density of 8.2 kg/m^3, c of 300 J/Kg K. On its surface, the overall heat transfer coefficient is 200 W/m^2 K. Neglect any conduction loss from the sphere to other parts of the thermocouple. Create a plot of measurement error as a function of time for the thermocouple, expressed as a fraction of the initial temperature difference.arrow_forwardThe convection coefficient for a hot a fluid flowing over a cool surface is 150 W/m^2. The fluid temperature is 410 K and the surface is held at 290 K. Determine the heat transfer per unit surface area from the fluid to the surface.arrow_forwardAnswer this ASAP The diameter of the tube is 25 mm. The specific heat of water is 4.18 kJ/kg.°C. The overall heat transfer coefficient is 0.7 kW/m².°C. 1. Schematic of temperature distribution 2.ΔTLMTD 3.Actual heat transfer rate 4.Cmin 5.Maximum heat transfer ratearrow_forward
- Q5Two large containers A and B of the same size are filled with different fluids. The fluids in containers A and B are maintainedat 0° C and 100° C, respectively. A small metal bar, whose initial temperature is 100° C, is lowered into container A. After1 minute the temperature of the bar is 90° C. After 2 minutes the bar is removed and instantly transferred to the othercontainer. After 1 minute in container B, the temperature of the bar rises 10°. How long, measured from the start of theentire process, will it take the bar to reach 99.9° C?arrow_forwardA mass of 300kg of oil is cooled in 1 hour from 70 celcius to 35 celcius in a cooler consisting of a bank of tubes through which hot oil passes. Cooling water circulates around the outside of the tubes. Calculate the mass of cooling water required per hour if the water temp increases by 21 degrees celcius . Specific Heat of Oil - 2.0 kJ/kg deg C Specific Heat of Water - 4.186 kJ/kg deg Carrow_forwardWater with a temperature of 15 ° C approaches vertically to a cylinder with a surface temperature of 120 ° C and a diameter of 25 mm. The velocity of the water has been given as 1 m / s. What is the heat transfer rate in kW / square meter?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license