Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 30P
(a)
To determine
To Find:The vectors that could represent the velocity of the stone according to the given image.
(b)
To determine
To Find: The vectors that could be represent the acceleration of the stone according to the given image.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure, you throw a ball toward a wall at speed 23.0 m/s and at angle θ0 = 36.0˚ above the horizontal. The wall is distance d = 21.0 m from the release point of the ball. (a) How far above the release point does the ball hit the wall? What are the (b) horizontal and (c) vertical components of its velocity as it hits the wall?
A car travels 20.0 km due north and then 35.0 km
in a direction 60.0° west of north as shown in Fig-
ure 3.11a. Find the magnitude and direction of
the car’s resultant displacement.
In a historical movie, you observed a catapult being used by
an army. It hurled a stone with a velocity of 55
m
at an
S
angle of 32° from the horizontal. How far did the stone travel
horizontally?
Chapter 3 Solutions
Physics for Scientists and Engineers
Ch. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Prob. 113PCh. 3 - Prob. 114PCh. 3 - Prob. 115PCh. 3 - Prob. 116PCh. 3 - Prob. 117PCh. 3 - Prob. 118PCh. 3 - Prob. 119PCh. 3 - Prob. 120PCh. 3 - Prob. 121PCh. 3 - Prob. 122P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure OQ3.3 shows a birds-eye view of a car going around a highway curve. As the car moves from point 1 to point 2, its speed doubles. Which of the vectors (a) through (e) shows the direction of the cars average acceleration between these two points?arrow_forwardA particle initially located at the origin has an acceleration of a=3.00jm/s2 and an initial velocity of vi=5.00im/s. Find (a) the vector position of the particle at any time t, (b) the velocity of the particle at any time t, (c) the coordinates of the particle at t = 2.00 s, and (d) the speed of the particle at t = 2.00 s.arrow_forwardA cannon ball is fired with an initial speed of 123 m/s at angle of 60 degrees from the horizontal. Express the initial velocity as a linear combination of its unit vector components. Vo - ( mis) 7 + m/s) ? At the maximum height, the speed of the cannon ball is v= m/s and the magnitude of its acceleration is a- m/s?. The time needed to reach maximum height is t- S. The maximum height reached by the cannon ball is H= m.arrow_forward
- FIGURE 3-33 e Problem 7. west of north (Fig. 3–34). (a) Find the components of the velocity vector in the northerly and westerly direc- (835 km/h) tions. (b) How far north and how far west has the plane traveled after 1.75 h? 41.5 W FIGURE 3-34arrow_forward3.00 m, 37P The three vectors in Fig. 3-31 have magnitudes a = b = 4.00 m, and c = 10.0 m. What are (a) the x component and (b) the y component of ā; (c) the x component and (d) the y com- ponent of b; and (e) the x com- ponent and (f) the y component of ĉ? If & = pā + qb, what are the values of (g) p and (h) q? ilw 30° a Fig. 3-31 Problem 37.arrow_forwardPlease help me, thank you so much!arrow_forward
- The velocity vector of a particle is given by: V = Vje-)[sin(wt)i + cos(wt)j] where, Vo = 12.1 m/s; T = 2.5 s; w = 5.2 rad/s Calculate the magnitude of the acceleration (in m/s2) at t = 7.4 sarrow_forwardThe position r of a particle moving in an xy plane is given by ř seconds. In unit-vector notation, calculate (a) 7, (b) V , and (c) a for t = 3.00 s. (d) What is the angle between the positive direction of the x axis and a line tangent to the particle's path at t = 3.00 s? Give your answer in the range of (-180°; 180°). (4.00r3 – 1.00t)î + (5.00 – 1.00r4)j with 7 in meters and t in (a) Number i i Units (b) Number ît i Units i (c) Number i i Units (d) Number i Unitsarrow_forwardA man throws a stone upward at an angle of 30° to the horizontal. It lands 60 m measured horizontally and 2 m below his arm measured vertically. Determine the time of flight and the initial velocity of the stone.arrow_forward
- A projectile launched at 45° upwards from the ground takes 2.4 seconds to return to the ground. Approximately what speed was the projectile launched?arrow_forwardIn the figure, a radar station detects an airplane approaching directly from the east. At first observation, the airplane is at distance d₁-320 m from the station and at angle 0₁ - 44° above the horizon. The airplane is tracked through an angular change A0 - 123° in the vertical east-west plane; its distance is then d₂ - 750 m. Find the (a) magnitude and (b) direction of the airplane's displacement during this period. Give the direction as an angle relative to due west, with a positive angle being above the horizon and a negative angle being below the horizon. (a) Number (b) Number W Units Units AP Airplane d₂ Radar disharrow_forwardOasis B is 9.0km due east of oasis A. Starting from oasis A, a camel walks 20 km in a direction 15.0° south of east and then walks 34 km due north. If it is to then walk directly to B, (a) how far and (b) in what direction (relative to the positive x-axis within the range (-180°, 180°]) should it walk? Gruen data : Distance between A AND B'is d = 9,0 Km Please Note: step I step 2 all the answeRs are correct, The vector diagram of displacement of camel is shown below. A From step 4 (b) Please explain (Cindetail Why y ou use the 270° Qnd - tan () insteod of ton" ) Theunk jou! N R d2 W- B E C E In above figure: Step 4 d, = 20 km (а) d, = 34 km The distance travelled by the camel to reach the oasis B is: JBC + DC DB = Step 3 (10.318 km ) +(28.823 km )* = 30.6 km From geometrical property: (b) * Explaruthion, Please BC = AC – AB = d̟ cos15° - d = (20 km ) cos15° – 9.0 km 0 = 270° – ZCDB = 10.318 km The direction of displacement relative to positive x-axis is ВС = 270°- tan DC DC = DE - CE…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY