
ESSENTIAL CALC.,EARLY...V1 >CUSTOM PKG<
2nd Edition
ISBN: 9781285135694
Author: Stewart
Publisher: CENGAGE C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 27RE
Calculate y'.
43. y = x sinh(x2)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The graph of
2(x² + y²)² = 25 (x²-y²), shown
in the figure, is a lemniscate of
Bernoulli. Find the equation of the
tangent line at the point (3,1).
-10
Write the expression for the slope in terms of x and y.
slope =
4x³ + 4xy2-25x
2
3
4x²y + 4y³ + 25y
Write the equation for the line tangent to the point (3,1).
LV
Q
+
Find the equation of the tangent line at the given value of x on the curve.
2y3+xy-y= 250x4; x=1
y=
Find the equation of the tangent line at the given point on the curve.
3y² -√x=44, (16,4)
y=]
...
Chapter 3 Solutions
ESSENTIAL CALC.,EARLY...V1 >CUSTOM PKG<
Ch. 3.1 - (a) Write an equation that defines the exponential...Ch. 3.1 - (a) How is the number e defined? (b) What is an...Ch. 3.1 - Graph the given functions on a common screen. How...Ch. 3.1 - Graph the given functions on a common screen. How...Ch. 3.1 - Graph the given functions on a common screen. How...Ch. 3.1 - Graph the given functions on a common screen. How...Ch. 3.1 - 7-12 Make a rough sketch of the graph of the...Ch. 3.1 - 7-12. Make a rough sketch of the graph of the...Ch. 3.1 - Make a rough sketch of the graph of the function....Ch. 3.1 - Make a rough sketch of the graph of the function....
Ch. 3.1 - Make a rough sketch of the graph of the function....Ch. 3.1 - Make a rough sketch of the graph of the function....Ch. 3.1 - Starting with the graph of y = ex, write the...Ch. 3.1 - Starting with the graph of y = ex, find the...Ch. 3.1 - Find the domain of each function. 19. (a)...Ch. 3.1 - Find the domain of each function. (a) g(t) =...Ch. 3.1 - 21–22 Find the exponential function f(x) = Cb2...Ch. 3.1 - Find the exponential function f(x) = Cax whose...Ch. 3.1 - Prob. 19ECh. 3.1 - Compare the rates of growth of the functions f(x)...Ch. 3.1 - Compare the functions f(x) = x10 and g(x) = ex by...Ch. 3.1 - Use a graph to estimate the values of x such that...Ch. 3.1 - Find the limit. limx(1.001)xCh. 3.1 - Prob. 24ECh. 3.1 - Find the limit. limxe3xe3xe3x+e3xCh. 3.1 - Find the limit. limx2+10x310xCh. 3.1 - Prob. 27ECh. 3.1 - Prob. 28ECh. 3.1 - Prob. 29ECh. 3.1 - Prob. 30ECh. 3.1 - If you graph the function f(x)=1e1/x1+e1/x you' ll...Ch. 3.1 - Graph several members of the family of functions...Ch. 3.2 - (a) What is a one-to-one function? (b) How can you...Ch. 3.2 - (a) Suppose f is a one-to-one function with domain...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - 3-14 A function is given by a table of values, a...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - A function is given by a table of values, a graph,...Ch. 3.2 - Assume that f is a one-to-one function. (a) If...Ch. 3.2 - 16. If f(x) = x5 + x3 + x, find f‒1(3) and f(f...Ch. 3.2 - 17. If g(x) = 3 + x + ex, find g−1(4).
Ch. 3.2 - 18. The graph of f is given.
(a) Why is f...Ch. 3.2 - The formula C=59(F32), where F 459.67, expresses...Ch. 3.2 - 20. In the theory of relativity, the mass of a...Ch. 3.2 - Find a formula for the inverse of the function....Ch. 3.2 - Find a formula for the inverse of the function....Ch. 3.2 - 21- 26 Find a formula for the inverse of the...Ch. 3.2 - 21- 26 Find a formula for the inverse of the...Ch. 3.2 - Find a formula for the inverse of the function....Ch. 3.2 - Find a formula for the inverse of the function....Ch. 3.2 - Find an explicit formula for f1 and use it to...Ch. 3.2 - Find an explicit formula for f1 and use it to...Ch. 3.2 - Use the given graph of f to sketch the graph of...Ch. 3.2 - Use the given graph of f to sketch the graph of...Ch. 3.2 - 3134 (a) Show that f is one-to-one. (b) Use...Ch. 3.2 - 3134 (a) Show that f is one-to-one. (b) Use...Ch. 3.2 - 3134 (a) Show that f is one-to-one. (b) Use...Ch. 3.2 - 3134 (a) Show that f is one-to-one. (b) Use...Ch. 3.2 - 35-38 Find (f1)(a). 35. f(x) = 2x3 + 3x2 + 7x + 4,...Ch. 3.2 - 35-38 Find(f1)(a). 36. f(x) = x3 + 3 sin x + 2 cos...Ch. 3.2 - 35-38 Find(f1)(a). 37. f(x)=3+x2+tan(x/2),1x1,a=3Ch. 3.2 - 35-38 Find(f1)(a). 38. f(x)=x3+x2+x+1,a=2Ch. 3.2 - Suppose f1 is the inverse function of a...Ch. 3.2 - Suppose f−1 is the inverse function of a...Ch. 3.2 - (a) How is the logarithmic function y = logax...Ch. 3.2 - (a) What is the natural logarithm? (b) What is the...Ch. 3.2 - Find the exact value of each expression (without a...Ch. 3.2 - Find the exact value of each expression (without a...Ch. 3.2 - Find the exact value of each expression (without a...Ch. 3.2 - Find the exact value of each expression (without a...Ch. 3.2 - Use the properties of logarithms to expand the...Ch. 3.2 - Use the properties of logarithms to expand the...Ch. 3.2 - Use the properties of logarithms to expand the...Ch. 3.2 - Use the properties of logarithms to expand the...Ch. 3.2 - Express the given quantity as a single logarithm....Ch. 3.2 - Express the given quantity as a single logarithm....Ch. 3.2 - Express the given quantity as a single logarithm....Ch. 3.2 - Use Formula 14 to evaluate each logarithm correct...Ch. 3.2 - Use Formula 14 to graph the given functions on a...Ch. 3.2 - Use Formula 14 to graph the given functions on a...Ch. 3.2 - 45. Suppose that the graph of y = log2 x is drawn...Ch. 3.2 - Compare the functions f(x)=x0.1 and g(x) = ln x by...Ch. 3.2 - Make a rough sketch of the graph of each function....Ch. 3.2 - Make a rough sketch of the graph of each function....Ch. 3.2 - (a) What are the domain and range of f? (b) What...Ch. 3.2 - (a) What are the domain and range of f? (b) What...Ch. 3.2 - Solve each equation for x. 51. (a) e74x=6 (b)...Ch. 3.2 - Solve each equation for x. 52. (a) ln(x2 1) = 3...Ch. 3.2 - Solve each equation for x. 53. (a) 2x5 = 3 (b) ln...Ch. 3.2 - Solve each equation for x. 54. (a) ln(ln x) = 1...Ch. 3.2 - Solve each inequality for x. 55. (a) ln x 0 (b)...Ch. 3.2 - Solve each inequality for x. 56. (a) 1 e3x1 2...Ch. 3.2 - (a) Find the domain of f(x) = ln(ex 3). (b) Find...Ch. 3.2 - (a) What are the values of eln 300 and ln(e300)?...Ch. 3.2 - 71-76 Find the limit. 71. limx3+ln(x29)Ch. 3.2 - 71-76 Find the limit. 72. limx2log5(8xx4)Ch. 3.2 - Prob. 73ECh. 3.2 - 7176 Find the limit. 74. limx0+ln(sinx)Ch. 3.2 - Find the limit. limx[ln(1+x2)ln(1+x)]Ch. 3.2 - Find the limit. limx[ln(2+x)ln(1+x)]Ch. 3.2 - When a camera flash goes off, the batteries...Ch. 3.2 - Let a 1. Prove, using precise definitions, that...Ch. 3.2 - (a) If we shift a curve to the left, what happens...Ch. 3.3 - Differentiate the function. f(x) = log10 (x3 + 1)Ch. 3.3 - Differentiate the function. f(x) = x ln x xCh. 3.3 - Differentiate the function. f(x ) = sin(ln x)Ch. 3.3 - Differentiate the function. f(x) = ln(sin2x)Ch. 3.3 - Differentiate the function. f(x)=ln1xCh. 3.3 - Differentiate the function. y=1lnxCh. 3.3 - Differentiate the function. f(x) = sin x ln(5x)Ch. 3.3 - Differentiate the function. 8. f(x) = log5 (xex)Ch. 3.3 - Differentiate the function.
Ch. 3.3 - Differentiate the function. 10. f(u)=u1+lnuCh. 3.3 - Differentiate the function. g(x)=ln(xx21)Ch. 3.3 - Differentiate the function. 12. h(x)=ln(x+x21)Ch. 3.3 - Differentiate the function. G(y)=ln(2y+1)5y2+1Ch. 3.3 - Differentiate the function. 14. g(r) = r2 ln(2r +...Ch. 3.3 - Differentiate the function. F(s) = ln ln sCh. 3.3 - Differentiate the function. 16. y=ln|cos(lnx)|Ch. 3.3 - Differentiate the function. 20. g(x)=xexCh. 3.3 - Differentiate the function. y=xexCh. 3.3 - Differentiate the function. f(x) = (x3 + 2x)exCh. 3.3 - Differentiate the function. H(z)=a2z2a2+z2Ch. 3.3 - Differentiate the function. y = tan[ln(ax + b)]Ch. 3.3 - Differentiate the function. 22. y=ex1exCh. 3.3 - Differentiate the function. y=1+2e3xCh. 3.3 - Differentiate the function. 24. y=e2tcos4tCh. 3.3 - Differentiate the function. 25. y = 5 1/xCh. 3.3 - Differentiate the function. 26. y=101x2Ch. 3.3 - Differentiate the function. 27. F(t) = et sin 2tCh. 3.3 - Differentiate the function. 28. y=eueueu+euCh. 3.3 - Differentiate the function. 29. y=ln|2x5x2|Ch. 3.3 - Differentiate the function. 30. y=1+xe2xCh. 3.3 - Differentiate the function. 31. f(t) = tan (et) +...Ch. 3.3 - Differentiate the function. 32. y=ektanxCh. 3.3 - Differentiate the function. 33. y=ln(ex+xex)Ch. 3.3 - Differentiate the function. 34. y=[ln(1+ex)]2Ch. 3.3 - Differentiate the function. 35. y=2xlog10xCh. 3.3 - Differentiate the function. 36. y = x2 e1/xCh. 3.3 - Differentiate the function. 37. f(t)=sin2(esin2t)Ch. 3.3 - Differentiate the function. 38. y=log2(excosx)Ch. 3.3 - Differentiate the function. 39. g(x) = (2rarx +...Ch. 3.3 - Differentiate the function. 40. y=23x2Ch. 3.3 - Find y and y. 41. y = eax sin xCh. 3.3 - Find y and y. 42. y=lnxx2Ch. 3.3 - Find y and y. 43. y = x ln xCh. 3.3 - Find y and y. 44. y = ln (sec x + tan x)Ch. 3.3 - Differentiate f and find the domain of f....Ch. 3.3 - Differentiate f and find the domain of f. f(x) ln...Ch. 3.3 - Find an equation of the tangent line to the curve...Ch. 3.3 - Find an equation of the tangent line to the curve...Ch. 3.3 - Let f(x) = cx + ln(cos x). For what value of c is...Ch. 3.3 - Let f(x) = loga(3x2 2). For what value of a is...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - 46. Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Use logarithmic differentiation to find the...Ch. 3.3 - Find y if 2x2y=x+y.Ch. 3.3 - Find an equation of the tangent line to the curve...Ch. 3.3 - Find y if y = ln(x2 + y2).Ch. 3.3 - Find y if xy = yx.Ch. 3.3 - The motion of a spring that is subject to a...Ch. 3.3 - Under certain circumstances a rumor spreads...Ch. 3.3 - Show that the function y = Aex + Bxex satisfies...Ch. 3.3 - For what values of r does the function y = erx...Ch. 3.3 - If f(x) = e2x, find a formula for f(n)(x).
Ch. 3.3 - Find the thousandth derivative of f(x) = xe–x.
Ch. 3.3 - Find a formula for f(n)(x) if f(x) = ln(x 1).Ch. 3.3 - Find d9dx9(x8lnx).Ch. 3.3 - If f(x) = 3 + x + ex, find (f1)(4).Ch. 3.3 - Evaluate .
Ch. 3.4 - A population of protozoa develops with a constant...Ch. 3.4 - A common inhabitant of human intestines is the...Ch. 3.4 - A bacteria culture initially contains 100 cells...Ch. 3.4 - A bacteria culture grows with constant relative...Ch. 3.4 - The table gives estimates of the world population,...Ch. 3.4 - The table gives the population of India, in...Ch. 3.4 - Experiments show that if the chemical reaction...Ch. 3.4 - Strontium-90 has a half-life of 28 days. (a) A...Ch. 3.4 - The half-life of cesium-137 is 30 years. Suppose...Ch. 3.4 - A sample oflritium-3 decayed to 94.5% of its...Ch. 3.4 - 11. Scientists can determine the age of ancient...Ch. 3.4 - A curve passes through the point (0, 5) and has...Ch. 3.4 - 15. A roast turkey is taken from an oven when its...Ch. 3.4 - In a murder investigation, the temperature of the...Ch. 3.4 - When a cold drink is taken from a refrigerator,...Ch. 3.4 - 18. A freshly brewed cup of coffee has temperature...Ch. 3.4 - The rate of change of atmospheric pressure P with...Ch. 3.4 - (a) If 1000 is borrowed at 8% interest, find the...Ch. 3.4 - If 3000 is invested at 5% interest, find the value...Ch. 3.4 - (a) How long will it take an investment to double...Ch. 3.5 - Find the exact value of each expression. (a)...Ch. 3.5 - Find the exact value of each expression. (a)...Ch. 3.5 - Find the exact value of each expression. (a)...Ch. 3.5 - Find the exact value of each expression. (a)...Ch. 3.5 - Find the exact value of each expression. (a)...Ch. 3.5 - Find the exact value of each expression. (a)...Ch. 3.5 - Prove that cos(sin1x)=1x2.Ch. 3.5 - Simplify the expression. tan(sin1x)Ch. 3.5 - Simplify the expression. sin(tan1x)Ch. 3.5 - Simplify the expression. cos(2 tan1x)Ch. 3.5 - Prove Formula 6 for the derivative of cos1 by the...Ch. 3.5 - (a) Prove that sin1x + cos1x = /2. (b) Use part...Ch. 3.5 - Prove that ddx(cot1x)=11+x2.Ch. 3.5 - Prove that ddx(sec1x)=1xx21.Ch. 3.5 - Prove that ddx(csc1x)=1xx21.Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - 1629 Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - 3031 Find the derivative of the function. Find the...Ch. 3.5 - Find the derivative of the function. Find the...Ch. 3.5 - Find y if tan1(xy) = 1 + x2y.Ch. 3.5 - If g(x)=xsin1(x/4)+16x2, find g(2).Ch. 3.5 - Find an equation of the tangent line to the curve...Ch. 3.5 - Prob. 35ECh. 3.5 - Find the limit. limxarccos(1+x21+2x2)Ch. 3.5 - Find the limit. limxarctan(ex)Ch. 3.5 - Prob. 38ECh. 3.5 - A ladder 10 ft long leans against a vertical wall....Ch. 3.5 - A lighthouse is located on a small island, 3 km...Ch. 3.5 - Some authors define y = sec1x sec y = x and y ...Ch. 3.5 - (a) Sketch the graph of the function f(x) =...Ch. 3.6 - Find the numerical value of each expression. 1....Ch. 3.6 - Find the numerical value of each expression. (a)...Ch. 3.6 - 1-6 Find the numerical value of each...Ch. 3.6 - Find the numerical value of each expression. 4....Ch. 3.6 - Find the numerical value of each expression. 5....Ch. 3.6 - Find the numerical value of each expression. 6....Ch. 3.6 - Prove the identity. 7. sinh(x) = sinh x (This...Ch. 3.6 - Prove the identity. 8. cosh(x) = cosh x (This...Ch. 3.6 - Prove the identity. 9. cosh x + sinh x = exCh. 3.6 - Prove the identity. 10. cosh x sinh r = exCh. 3.6 - Prove the identity. 11. sinh(x + y) = sinh x cosh...Ch. 3.6 - Prove the identity. 12. cosh(x + y) = cosh x cosh...Ch. 3.6 - Prove the identity. 15. sinh 2x = 2 sinh x cosh xCh. 3.6 - Prove the identity. 18. 1+tanhx1tanhx=e2xCh. 3.6 - Prove the identity. 19. (cosh x + sinh x)n = cosh...Ch. 3.6 - If x=1213 find the values of the other hyperbolic...Ch. 3.6 - If cosh=53 and x 0. find the values of the other...Ch. 3.6 - (a) Use the graphs of sinh, cosh, and tanh in...Ch. 3.6 - Use the definitions of the hyperbolic functions to...Ch. 3.6 - Prove the formulas given in Table 1 for the...Ch. 3.6 - Give an alternative solution 10 Example 3 by...Ch. 3.6 - Prove Equation 4.Ch. 3.6 - Prove Formula 5 using (a) the method of Example 3...Ch. 3.6 - For each of I he following functions (i) give a...Ch. 3.6 - Prove the formulas given in Table 6 for the...Ch. 3.6 - Find the derivative. Simplify where possible. f(x)...Ch. 3.6 - Find the derivative. Simplify where possible. f(x)...Ch. 3.6 - Find the derivative. Simplify where possible. g(x)...Ch. 3.6 - Find the derivative. Simplify where possible. h(x)...Ch. 3.6 - Find the derivative. Simplify where possible. f(t)...Ch. 3.6 - Find the derivative. Simplify where possible. f(t)...Ch. 3.6 - Find the derivative. Simplify where possible. y =...Ch. 3.6 - Find the derivative. Simplify where possible. 37....Ch. 3.6 - Find the derivative. Simplify where possible....Ch. 3.6 - 26-41 Find the derivative. Simplify where...Ch. 3.6 - Find the derivative. Simplify where possible. 40....Ch. 3.6 - 30-45 Find the derivative. Simplify where...Ch. 3.6 - Find the derivative. Simplify where possible. 42....Ch. 3.6 - Find the derivative. Simplify where possible. 43....Ch. 3.6 - Find the derivative. Simplify where possible. 44....Ch. 3.6 - Find the derivative. Simplify where possible. 45....Ch. 3.6 - Show that ddx1+tanhx1tanhx4=12ex/2.Ch. 3.6 - Show that ddx arctan(tanh x) = sech 2x.Ch. 3.6 - The Gateway Arch in St. Louis was designed by Eero...Ch. 3.6 - If a water wave with length L. moves with velocity...Ch. 3.6 - A flexible cable always hangs in the shape of a...Ch. 3.6 - Prob. 47ECh. 3.6 - Using principles from physics it can be shown that...Ch. 3.6 - A cable with linear density = 2 kg/m is strung...Ch. 3.6 - Evaluate limxsinhxex.Ch. 3.6 - (a) Show that any function of the form y = A sinh...Ch. 3.6 - If x = ln( sec + tan ), show that sec = cosh x.Ch. 3.6 - 57. At what point of the curve y = cosh x does the...Ch. 3.6 - Show that if a 0 and b 0, then there exist...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Prob. 5ECh. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Prob. 7ECh. 3.7 - Prob. 8ECh. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Prob. 12ECh. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - 33. Find the limit. Use l’Hospital’s Rule where...Ch. 3.7 - 34. Find the limit. Use l’Hospital’s Rule where...Ch. 3.7 - Prob. 17ECh. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - 49. Find the limit. Use l’Hospital’s Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Find the limit. Use lHospitals Rule where...Ch. 3.7 - Prob. 37ECh. 3.7 - 1-38 Find the limit. Use lHospitals Rule where...Ch. 3.7 - Prob. 39ECh. 3.7 - Prob. 40ECh. 3.7 - Prob. 41ECh. 3.7 - Prob. 42ECh. 3.7 - Prob. 43ECh. 3.7 - Prob. 44ECh. 3.7 - If an object with mass m is dropped from rest, one...Ch. 3.7 - If an initial amount A0 of money is invested at an...Ch. 3.7 - If an electrostatic field E acts on a liquid or a...Ch. 3.7 - 82. A metal cable has radius r and is covered by...Ch. 3.7 - Prob. 49ECh. 3.7 - The figure shows a sector of a circle with central...Ch. 3.7 - Evaluate limx[xx2ln(1+xx)].Ch. 3.7 - 86. Suppose f is a positive function. If and ,...Ch. 3.7 - If f is continuous, f(2) = 0, and f(2) = 7,...Ch. 3.7 - For what values of a and b is the following...Ch. 3.7 - If f is continuous, use lHospitals Rule to show...Ch. 3.7 - If f is continuous, show that...Ch. 3.7 - Let f(x)={e1/x2ifx00ifx=0 (a) Use the definition...Ch. 3.7 - Let f(x)={xxifx01ifx=0 (a) Show that f is...Ch. 3 - Prob. 1RCCCh. 3 - (a) How is the inverse sine function f(x) = sin1 x...Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - The graph of g is given. (a) Why is g one-to-one?...Ch. 3 - 1112 Find the exact value of each expression. 11....Ch. 3 - 1112 Find the exact value of each expression. 12....Ch. 3 - 1316 Solve the equation for x. 13. (a) ex = 5 (b)...Ch. 3 - 1316 Solve the equation for x. 14. (a) eex=2 (b)...Ch. 3 - 1316 Solve the equation for x. 15. (a) ln(x + 1) +...Ch. 3 - 1316 Solve the equation for x. 16. (a) ln(1 + ex)...Ch. 3 - (a) Express e as a limit. (b) What is the value of...Ch. 3 - (a) What are the domain and range of the natural...Ch. 3 - (a) Write a differential equation that expresses...Ch. 3 - State the derivative of each function. (a) y = ex...Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - 1-50 Calculate y'.
8. xey = y sin x
Ch. 3 - Calculate y'. 9. y = ln(x ln x)Ch. 3 - Calculate y'. 10. y = emx' cos nxCh. 3 - Calculate y'. 12. y = (arcsin 2x)2Ch. 3 - Calculate y'. 13. y=e1/xx2Ch. 3 - Calculate y'. 14. y = ln sec xCh. 3 - Write the definitions of the hyperbolic functions...Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - The graph of f is shown. Is f one-to-one? Explain.Ch. 3 - Suppose f is one-to-one, f(7) = 3, and f(7) = 8....Ch. 3 - Find the inverse function of f(x)=x+12x+1.Ch. 3 - 59 Sketch a rough graph of the function without...Ch. 3 - 59 Sketch a rough graph of the function without...Ch. 3 - 59 Sketch a rough graph of the function without...Ch. 3 - 59 Sketch a rough graph of the function without...Ch. 3 - 59 Sketch a rough graph of the function without...Ch. 3 - Let a 1. For large values of x, which of the...Ch. 3 - 1743 Differentiate. 22. y = x cos1xCh. 3 - 1743 Differentiate. 23. f(t) = t2 ln tCh. 3 - 1743 Differentiate. 24. g(t)=et1+etCh. 3 - 1743 Differentiate. 29. h() = etan 2Ch. 3 - 1743 Differentiate. 36. y = sin1(ex)Ch. 3 - Show that ddx(12tan1x+14ln(x+1)2x2+1)=1(1+x)(1+x2)Ch. 3 - 4548 Find f in terms of g. 45. f(x)=eg(x)Ch. 3 - 4548 Find f in terms of g. 46. f(x) = g(ex)Ch. 3 - 4548 Find f in terms of g. 47. f(x) = ln |g(x)|Ch. 3 - 4548 Find f in terms of g. 48. f(x) = g(ln x)Ch. 3 - 4950 Find f(n)(x). 49. f(x) = 2xCh. 3 - 4950 Find f(n)(x). 50. f(x) = ln(2x)Ch. 3 - Find an equation of the tangent to the curve y = x...Ch. 3 - A bacteria culture contains 200 cells initially...Ch. 3 - Cobalt-60 has a half-life of 5.24 years. (a) Find...Ch. 3 - Let C(t) be the concentration of a drug in the...Ch. 3 - A cup of hot chocolate has temperature 80C in a...Ch. 3 - 6176 Evaluate the limit. 61. limx0+tan1(1/x)Ch. 3 - 6176 Evaluate the limit. 62. limxexx2Ch. 3 - 6176 Evaluate the limit. 63. limx3e2/(x3)Ch. 3 - 6176 Evaluate the limit. 64. limxarctan(x3x)Ch. 3 - 6176 Evaluate the limit. 65. limx0+ln(sinhx)Ch. 3 - Prob. 66RECh. 3 - 6176 Evaluate the limit. 67. limx1+2x12xCh. 3 - 6176 Evaluate the limit. 68. limx(1+4x)xCh. 3 - 6176 Evaluate the limit. 69. limx0ex1tanxCh. 3 - 6176 Evaluate the limit. 70. limx0tan4xx+sin2xCh. 3 - Prob. 71RECh. 3 - Prob. 72RECh. 3 - 6176 Evaluate the limit. 73. limx(x2x3)e2xCh. 3 - 6176 Evaluate the limit. 74. limx(x)cscxCh. 3 - Prob. 75RECh. 3 - 6176 Evaluate the limit. 76. limx(/2)(tanx)cosxCh. 3 - If f(x) = ln x + tan1x, find (f1)(/4).Ch. 3 - Show that cosarctan[sin(arccotx)]=x2+1x2+2Ch. 3 - Calculate y'. 17. y=arctanCh. 3 - Calculate y'. 21. y = 3x ln xCh. 3 - Calculate y'. 27. y = log5(1 + 2x)Ch. 3 - Calculate y'. 28. y = (cos x)xCh. 3 - Calculate y'. 29. y=lnsinx12sin2xCh. 3 - Calculate y'. 30. y=(x2+1)4(2x+1)3(3x1)5Ch. 3 - Calculate y'. 31. y = x tan1(4x)Ch. 3 - Calculate y'. 32. y = ecos x + cos(ex)Ch. 3 - Calculate y'. 34. y = 10tanCh. 3 - Calculate y'. 38. y=arctan(arcsinx)Ch. 3 - Calculate y'. 41. y=x+1(2x)5(x+3)7Ch. 3 - Calculate y'. 43. y = x sinh(x2)Ch. 3 - Calculate y'. 45. y = ln( cosh 3x)Ch. 3 - 1-50 Calculate y'.
47. y = cosh–1(sinh x)
Ch. 3 - Calculate y'. 48. y=xtanh1xCh. 3 - Calculate y'. 49. y=cos(etan3x)Ch. 3 - Use mathematical induction (page 72) to show that...Ch. 3 - If f(x) = xesin x find f(x). Graph f and f on the...Ch. 3 - At what point on the curve y = [ln(x + 4)]2 is the...Ch. 3 - (a) Find an equation of the tangent to the curve y...Ch. 3 - The function C(t) = K(eat ebt), where a, b, and K...Ch. 3 - (a) What does lHospitals Rule say? (b) How can you...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- For a certain product, cost C and revenue R are given as follows, where x is the number of units sold in hundreds. Cost: C² = x² +92√x+56 Revenue: 898(x-6)² + 24R² = 16,224 dC a. Find the marginal cost at x = 6. dx The marginal cost is estimated to be $ ☐ . (Do not round until the final answer. Then round to the nearest hundredth as needed.)arrow_forwardThe graph of 3 (x² + y²)² = 100 (x² - y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (4,2). АУ -10 10 Write the expression for the slope in terms of x and y. slope =arrow_forwardUse a geometric series to represent each of the given functions as a power series about x=0, and find their intervals of convergence. a. f(x)=5/(3-x) b. g(x)= 3/(x-2)arrow_forward
- An object of mass 4 kg is given an initial downward velocity of 60 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is - 8v, where v is the velocity of the object in m/sec. Determine the equation of motion of the object. If the object is initially 500 m above the ground, determine when the object will strike the ground. Assume that the acceleration due to gravity is 9.81 m/sec² and let x(t) represent the distance the object has fallen in t seconds. Determine the equation of motion of the object. x(t) = (Use integers or decimals for any numbers in the expression. Round to two decimal places as needed.)arrow_forwardEarly Monday morning, the temperature in the lecture hall has fallen to 40°F, the same as the temperature outside. At 7:00 A.M., the janitor turns on the furnace with the thermostat set at 72°F. The time constant for the building is = 3 hr and that for the building along with its heating system is 1 K A.M.? When will the temperature inside the hall reach 71°F? 1 = 1 hr. Assuming that the outside temperature remains constant, what will be the temperature inside the lecture hall at 8:30 2 At 8:30 A.M., the temperature inside the lecture hall will be about (Round to the nearest tenth as needed.) 1°F.arrow_forwardFind the maximum volume of a rectangular box whose surface area is 1500 cm² and whose total edge length is 200 cm. cm³arrow_forward
- Find the minimum cost of a rectangular box of volume 120 cm³ whose top and bottom cost 6 cents per cm² and whose sides cost 5 cents per cm². Round your answer to nearest whole number cents. Cost = cents.arrow_forwardFind the absolute extrema of the function f(x, y) = x² + y² - 3x-3y+3 on the domain defined by x² + y² <9. Round answers to 3 decimals or more. Absolute Maximum: Absolute Minimum:arrow_forwardFind the maximum and minimum values of the function f(x, y) = e² subject to ï³ + y³ = 128 Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist. Maximum value:arrow_forward
- A chemical manufacturing plant can produce x units of chemical Z given p units of chemical P and 7 units of chemical R, where: z = 140p0.6,0.4 Chemical P costs $300 a unit and chemical R costs $1,500 a unit. The company wants to produce as many units of chemical Z as possible with a total budget of $187,500. A) How many units each chemical (P and R) should be "purchased" to maximize production of chemical Z subject to the budgetary constraint? Units of chemical P, p = Units of chemical R, r = B) What is the maximum number of units of chemical Z under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production, z= unitsarrow_forwardA firm manufactures a commodity at two different factories, Factory X and Factory Y. The total cost (in dollars) of manufacturing depends on the quantities, and y produced at each factory, respectively, and is expressed by the joint cost function: C(x, y) = x² + xy +4y²+400 A) If the company's objective is to produce 1,900 units per month while minimizing the total monthly cost of production, how many units should be produced at each factory? (Round your answer to whole units, i.e. no decimal places.) To minimize costs, the company should produce: units at Factory X and units at Factory Y B) For this combination of units, their minimal costs will be enter any commas in your answer.) Question Help: Video dollars. (Do notarrow_forwarduse Lagrange multipliers to solvearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
03a: Numerical Differentiation Review; Author: Jaisohn Kim;https://www.youtube.com/watch?v=IMYsqbV4CEg;License: Standard YouTube License, CC-BY