Excursions in Modern Mathematics (9th Edition)
Excursions in Modern Mathematics (9th Edition)
9th Edition
ISBN: 9780134468372
Author: Peter Tannenbaum
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 26E

Allen, Brady, Cody; and Diane are sharing a cake valued at $20 using the lone-divider method. The divider divides the cake into four slices ( s 1 , s 2 , s 3 , and s 4 ) . T a b l e 3 - 1 9 shows the values of the slices in the eyes of each player.

T a b l e   3 1 9

s 1 s 2 s 3 s 4
Allen $ 4.00 $ 5.00 $ 4.00 $ 7.00
Brady $ 6.00 $ 6.50 $ 4.00 $ 3.50
Cody $ 5.00 $ 5.00 $ 5.00 $ 5.00
Diane $ 7.00 $ 4.50 $ 4.00 $ 4.50

a Who was the divider?

b. Find a fair division of the cake.

Blurred answer
Students have asked these similar questions
these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.
Q1) Classify the following statements as a true or false statements a. Any ring with identity is a finitely generated right R module.- b. An ideal 22 is small ideal in Z c. A nontrivial direct summand of a module cannot be large or small submodule d. The sum of a finite family of small submodules of a module M is small in M A module M 0 is called directly indecomposable if and only if 0 and M are the only direct summands of M f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct- summand in M & Z₂ contains no minimal submodules h. Qz is a finitely generated module i. Every divisible Z-module is injective j. Every free module is a projective module Q4) Give an example and explain your claim in each case a) A module M which has two composition senes 7 b) A free subset of a modale c) A free module 24 d) A module contains a direct summand submodule 7, e) A short exact sequence of modules 74.
************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.

Chapter 3 Solutions

Excursions in Modern Mathematics (9th Edition)

Ch. 3 - Suppose that Brad values chocolate cake four as...Ch. 3 - Suppose that Angelina values strawberry cake five...Ch. 3 - Karla and five other friends jointly buy the...Ch. 3 - Marla and five other friends jointly buy the...Ch. 3 - Suppose that they flip a coin and Jackie ends up...Ch. 3 - Suppose they flip a coin and Karla ends up being...Ch. 3 - Suppose that they flip a coin and Martha ends up...Ch. 3 - Suppose that they flip a coin and Nick ends up...Ch. 3 - Suppose that David is the divider and Paula is the...Ch. 3 - Suppose that Paula is the divider and David is the...Ch. 3 - Three partners are dividing a plot of land among...Ch. 3 - Three partners are dividing a plot of land among...Ch. 3 - Four partners are dividing a plot of land among...Ch. 3 - Four partners are dividing a plot of land among...Ch. 3 - Mark, Tim, Maia, and Kelly are dividing a cake...Ch. 3 - Allen, Brady, Cody; and Diane are sharing a cake...Ch. 3 - Prob. 27ECh. 3 - Four partners are dividing a plot of land among...Ch. 3 - Prob. 29ECh. 3 - Five players are dividing a cake among themselves...Ch. 3 - Four partners Egan, Fine, Gong, and Hart jointly...Ch. 3 - Four players Abe, Betty, Cory, and Dana are...Ch. 3 - Exercises 33 and 34 refer to the following...Ch. 3 - Exercises 33 and 34 refer to the following...Ch. 3 - Exercise 35 through 38 refer to the following...Ch. 3 - Exercise 35 through 38 refer to the following...Ch. 3 - Prob. 37ECh. 3 - Prob. 38ECh. 3 - Exercises 39 and 40 refer to the following:...Ch. 3 - Exercises 39 and 40 refer to the following:...Ch. 3 - Jackie, Karla, and Lori are dividing the foot-long...Ch. 3 - Jackie, Karla, and Lori are dividing the foot-long...Ch. 3 - Ana, Belle, and Chloe are dividing four pieces of...Ch. 3 - Andre, Bea, and Chad are dividing an estate...Ch. 3 - Five heirs A,B,C,D, and E are dividing an estate...Ch. 3 - Oscar, Bert, and Ernie are using the method of...Ch. 3 - Anne, Bette, and Chia jointly own a flower shop....Ch. 3 - Al, Ben and Cal jointly own a fruit stand. They...Ch. 3 - Ali, Briana, and Caren are roommates planning to...Ch. 3 - Anne, Bess and Cindy are the roommates planning to...Ch. 3 - Prob. 51ECh. 3 - Three players (A,B and C) are dividing the array...Ch. 3 - Three players (A,B,andC) are dividing the array of...Ch. 3 - Three players (A,B,andC) are dividing the array of...Ch. 3 - Five players (A,B,C,D,andE) are dividing the array...Ch. 3 - Four players (A,B,C,andD) are dividing the array...Ch. 3 - Prob. 57ECh. 3 - Queenie, Roxy, and Sophie are dividing a set of 15...Ch. 3 - Ana, Belle, and Chloe are dividing 3 Choko bars, 3...Ch. 3 - Prob. 60ECh. 3 - Prob. 61ECh. 3 - Prob. 62ECh. 3 - Prob. 63ECh. 3 - Prob. 64ECh. 3 - Three players A, B, and C are sharing the...Ch. 3 - Angeline and Brad are planning to divide the...Ch. 3 - Prob. 67ECh. 3 - Efficient and envy-free fair divisions. A fair...Ch. 3 - Suppose that N players bid on M items using the...Ch. 3 - Asymmetric method of sealed bids. Suppose that an...Ch. 3 - Prob. 73E
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Text book image
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License