(a)
Show that the given circuit satisfies Kirchhoff’s current law at junction terminals x-y.
(a)
Answer to Problem 1P
Yes, the given circuit satisfies Kirchhoff’s current law at junction terminals x-y.
Explanation of Solution
Given data:
Refer to Figure given in the textbook.
The voltage delivered by the source is
PSPICE Simulation:
Draw the circuit diagram in PSpice as shown in Figure 1.
Save the circuit and provide the Simulation Settings as shown in Figure 2.
Now run the simulation and the results will be displayed as shown in Figure 3 by enabling the “Enable Bias Current Display” icon.
From Figure 3, source current
Kirchhoff’s current law states that the current entering the node is equal to the current leaving the node.
In Figure 3, apply Kirchhoff current law at node b. Therefore,
Rearrange the equation (1) as follows,
Substitute
Hence, the given circuit satisfies Kirchhoff’s current law at junction terminals x-y.
Conclusion:
Thus, yes, the given circuit satisfies Kirchhoff’s current law at junction terminals x-y.
(b)
Show that the given circuit satisfies Kirchhoff’s voltage law.
(b)
Answer to Problem 1P
Yes, the given circuit satisfies Kirchhoff’s voltage law.
Explanation of Solution
Given data:
Refer to Figure given in the textbook.
Voltage delivered by the source is
PSPICE Simulation:
Draw the circuit diagram in PSpice as shown in Figure 4.
Save the circuit and provide the Simulation Settings as shown in Figure 5.
Now run the simulation and the results will be displayed as shown in Figure 3 by enabling the “Enable Bias Current Display” icon and “Enable Bias Voltage Display” icon.
From Figure 6, the voltage
The voltage
The voltage
The voltage
Kirchhoff’s voltage law states that the sum of the voltage rise around any closed loop must be equal to the sum of voltage drops around that loop.
In Figure 6, apply Kirchhoff’s voltage law to the loop abda.
From Figure 6, the source voltage
Substitute
In Figure 6, apply Kirchhoff’s voltage law to the loop bcdb.
Substitute
In Figure 6, apply Kirchhoff’s voltage law to the loop abcda.
Substitute
Hence, the given circuit satisfies Kirchhoff’s voltage law around every closed loop.
Conclusion:
Thus, yes, the given circuit satisfies Kirchhoff’s voltage law.
Want to see more full solutions like this?
Chapter 3 Solutions
Electrical Circuits and Modified MasteringEngineering - With Access
- In the circuit of the figure, ε = 12.2 V, R = 7.34 Ω and L = 5.48 H. The battery is connected at t = 0. Determine: a) The amount of energy delivered by the battery during the first 2.00 s. b) The amount of energy stored in the magnetic field of the inductor. c) The amount of energy dissipated in the resistor.arrow_forward4) For the sinusoidal signal m(t) = 2 sin(1000πt + 0.0557), shown down, is sampled, quantized and then encoded using the PCM technique. If a uniform quantizer, with 8 levels and a dynamic range [-2, 2], is used (a) Calculate the first 4 quantized samples and the ciated quantization errors. (b) Calculate the maximum quantization error (c) Calculate the signal-to-quantization- noise ratio. (d) Calculate the resultant bit rate. italicio (e) If it is required to increase the signal-to-quantization-noise ratio by 6 dB, how many quantization levels should be used in this case? What is the ratio between the new bit rate and the previous bit rate? msecarrow_forwardThe current of a 90.0 mH inductor changes with time in the form I=1.00t2 - 6.00t (in SI units). Determine the magnitude of the induced fem at a) t=1.00 s b) At what time will the fem equal zero?arrow_forward
- A coil of 200 turns and 4 cm2 of section, is rotating in a magnetic field of 0.5 T. a) What must be its angular frequency to generate a maximum fem (εm) of 10 V?b) What is the value of εm if it rotates at 60 rev/s?arrow_forwardAn aluminum wire of constant circular cross section with a diameter of 4.00 mm is subjected to a uniform electric field of 0.2 V/m. Determine: (a) The current through the conductor if its conductivity is 3.64x107 Ω-1.m-1. b) The number of free electrons per unit volume if one conduction electron per aluminum atom is assumed. (The density is 2.7 g/cm3 and the molar mass is 27 g/mol). c) The drift velocity.arrow_forwardQ1) Your Company has a large data store that needs to back up to a new site every week. The volume of the data to backup every week is 10 TB. You have two choices: Choice #1: Use your high-speed Internet connection and transfer all the data over the Internet; Your Internet connection is 100 Mbps. Choice #2: Copy your data to a number of portable hard disks, drive them over in your van, then read data from the hard disks at the new site. The read/write speed of your portable hard disks is 500 Mbps. Each disk can hold 1 TB. You can only copy to or read data from one disk at a time. You need to drive 1 hour to the new site. a) Compute the data rate for the two choices. b) Which choice is faster?arrow_forward
- frame size frame containing the seven bits 1100010 is received. The last 3 bits are the CRC generated using the generator polynomial G(x) = x+x+1. Does this frame contain an error? Show your calculations. data stream. Harrow_forwardPV system". simulation including boost converter and MPPT in MATLA By using matlab lam need circuit diagram And output formarrow_forwardSimulating Boost Converter Battery Charging Powered by PV Solar Circuit diagram By the matlab, in need plot input wafe from outpout :363 V : 500 V :10 kHz PV module voltage or BOOST converter input(vin) BOOST converter output(Vo) Pulse generator frequency Pulse width or duty cycle(d)= ? Vo=vin/(1-d) d=1-(vin/vo)-1-(363/500)=0.274arrow_forward
- 47. Compute the convolution sum y[n] = x[n]+h[n] of the following pairs of sequence (a) x[n]=u[n], h[n] = 2"u[-n] (b) x[n] = u[n]-uln - N], h[n]=a"u[n], 0 < a <1arrow_forwardImpedances are in ohms Need Handwritten solution DO NOT USE CHATGPT PLEASE OTHERWISE DOWNVOTEarrow_forward2.56. The impulse response of a discrete-time LTI system is given by h[n] = ()u[n] Let y[n] be the output of the system with the input Find y[1] and y[4]. Ans. y[1] = 1 and y[4] = 1. x[n] = 28[n]+8[n-3]arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,