Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 29.5P
(a)
To determine
The direction of magnetic force exerted on the proton when the direction of proton’s velocity is in the positive
(b)
To determine
The direction of magnetic force exerted on the proton when the direction of proton’s velocity is in the negative
(c)
To determine
The direction of magnetic force exerted on the proton when the direction of proton’s velocity is in the positive
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A proton enters a magnetic field in such a way that it is traveling perpendicularly to the magnetic field lines. If the proton moves in a circle of radius 125 mm, and feels a force of 5.88 x 10 -16 N, how fast is the proton traveling?
A proton travels with a speed of 5 × 10^6 m/s in a direction that makes an angle of 60 degrees with the direction of a magnetic field of magnitude 7.6T. What is the magnitude of the magnetic force on the proton?
Several electrons move at speed 5.00 × 10^5 m/s in a uniform magnetic field with magnitude B = 0.500 T directed downward. Find the magnetic force on the electron at point c where the velocity of the electron maks a 30 deg angle with the horizontal, pointing to the upper right. Enter a positive value if the direction of magnetic force is out of the page and enter a negative value if the direction of magnetic force is in to the page. Use E-scientific notation. Round to 2 decimal places.
Chapter 29 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 29 - An electron moves in the plane of this paper...Ch. 29 - Prob. 29.2QQCh. 29 - A wire carries current in the plane of this paper...Ch. 29 - (i) Rank the magnitudes of the torques acting on...Ch. 29 - Prob. 29.1OQCh. 29 - Rank the magnitudes of' the forces exerted on the...Ch. 29 - A particle with electric charge is fired into a...Ch. 29 - A proton moving horizontally enters a region where...Ch. 29 - Prob. 29.5OQCh. 29 - A thin copper rod 1.00 in long has a mass of 50.0...
Ch. 29 - Prob. 29.7OQCh. 29 - Classify each of die following statements as a...Ch. 29 - An electron moves horizontally across the Earths...Ch. 29 - A charged particle is traveling through a uniform...Ch. 29 - In the velocity selector shown in Figure 29.13....Ch. 29 - Prob. 29.12OQCh. 29 - A magnetic field exerts a torque on each of the...Ch. 29 - Can a constant magnetic field set into motion an...Ch. 29 - Explain why it is not possible to determine the...Ch. 29 - Is it possible to orient a current loop in a...Ch. 29 - How can the motion of a moving charged particle be...Ch. 29 - Prob. 29.5CQCh. 29 - Charged panicles from outer space, called cosmic...Ch. 29 - Two charged particles are projected in the same...Ch. 29 - At the equator, near the surface of the Earth, the...Ch. 29 - Determine the initial direction of the deflection...Ch. 29 - Find the direction of the magnetic field acting on...Ch. 29 - Consider an electron near the Earths equator. In...Ch. 29 - Prob. 29.5PCh. 29 - A proton moving at 4.00 106 m/s through a...Ch. 29 - An electron is accelerated through 2.40 103 V...Ch. 29 - A proton moves with a velocity of v = (2i 4j + k)...Ch. 29 - A proton travels with a speed of 5.02 106 m/s in...Ch. 29 - A laboratory electromagnet produces a magnetic...Ch. 29 - A proton moves perpendicular to a uniform magnetic...Ch. 29 - Review. A charged particle of mass 1.50 g is...Ch. 29 - An electron moves in a circular path perpendicular...Ch. 29 - An accelerating voltage of 2.50103 V is applied to...Ch. 29 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 29 - A particle with charge q and kinetic energy K...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. An electron moves in a circular path...Ch. 29 - Review. A 30.0-g metal hall having net charge Q =...Ch. 29 - A cosmic-ray proton in interstellar space has an...Ch. 29 - Assume the region to the right of a certain plane...Ch. 29 - A singly charged ion of mass m is accelerated from...Ch. 29 - A cyclotron designed to accelerate protons has a...Ch. 29 - Prob. 29.25PCh. 29 - Singly charged uranium-238 ions are accelerated...Ch. 29 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 29 - A particle in the cyclotron shown in Figure 28.16a...Ch. 29 - Prob. 29.29PCh. 29 - Prob. 29.30PCh. 29 - Prob. 29.31PCh. 29 - A straight wire earning a 3.00-A current is placed...Ch. 29 - A conductor carrying a current I = 15.0 A is...Ch. 29 - A wire 2.80 m in length carries a current of 5.00...Ch. 29 - A wire carries a steady current of 2.40 A. A...Ch. 29 - Why is the following situation impossible? Imagine...Ch. 29 - Review. A rod of mass 0.720 kg and radius 6.00 cm...Ch. 29 - Review. A rod of mass m and radius R rests on two...Ch. 29 - A wire having a mass per unit length of 0.500 g/cm...Ch. 29 - Consider the system pictured in Figure P28.26. A...Ch. 29 - A horizontal power line oflength 58.0 in carries a...Ch. 29 - A strong magnet is placed under a horizontal...Ch. 29 - Assume the Earths magnetic field is 52.0 T...Ch. 29 - In Figure P28.28, the cube is 40.0 cm on each...Ch. 29 - Prob. 29.45PCh. 29 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 29 - A magnetized sewing needle has a magnetic moment...Ch. 29 - A current of 17.0 mA is maintained in a single...Ch. 29 - An eight-turn coil encloses an elliptical area...Ch. 29 - Prob. 29.50PCh. 29 - A rectangular coil consists of N = 100 closely...Ch. 29 - A rectangular loop of wire has dimensions 0.500 m...Ch. 29 - A wire is formed into a circle having a diameter...Ch. 29 - A Hall-effect probe operates with a 120-mA...Ch. 29 - Prob. 29.55PCh. 29 - Prob. 29.56APCh. 29 - Prob. 29.57APCh. 29 - Prob. 29.58APCh. 29 - A particle with positive charge q = 3.20 10-19 C...Ch. 29 - Figure 28.11 shows a charged particle traveling in...Ch. 29 - Review. The upper portion of the circuit in Figure...Ch. 29 - Within a cylindrical region of space of radius 100...Ch. 29 - Prob. 29.63APCh. 29 - (a) A proton moving with velocity v=ii experiences...Ch. 29 - Review. A 0.200-kg metal rod carrying a current of...Ch. 29 - Prob. 29.66APCh. 29 - A proton having an initial velocity of 20.0iMm/s...Ch. 29 - Prob. 29.68APCh. 29 - A nonconducting sphere has mass 80.0 g and radius...Ch. 29 - Why is the following situation impossible? Figure...Ch. 29 - Prob. 29.71APCh. 29 - A heart surgeon monitors the flow rate of blood...Ch. 29 - A uniform magnetic Held of magnitude 0.150 T is...Ch. 29 - Review. (a) Show that a magnetic dipole in a...Ch. 29 - Prob. 29.75APCh. 29 - Prob. 29.76APCh. 29 - Consider an electron orbiting a proton and...Ch. 29 - Protons having a kinetic energy of 5.00 MeV (1 eV...Ch. 29 - Review. A wire having a linear mass density of...Ch. 29 - A proton moving in the plane of the page has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proton travels with a speed of 3.00 106 m/s at an angle of 37.0 with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?arrow_forwardA particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardIn Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forward
- What magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward(a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forward12.4 Check Your Understanding Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively. The first wire is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the magnitude of the magnetic force per unit length of the first wire on the second and the second wire on the first?arrow_forward
- A charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? There may be more than one correct statement. (a) It exerts a force on the particle parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It does not change the magnitude of the momentum of the particle.arrow_forwardCheck Your Understanding A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east, (a) What is the magnetic force on a proton at the instant when it is moving vertically downward in the field with a speed of 4 x 107 m/s? (b) Compare this force with the weight w of a proton.arrow_forwardIf a charged particle moves in a straight line, can you conclude that there is no magnetic field present?arrow_forward
- A wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0, (b) 90.0, and (c) 120.arrow_forwardOne long wire carries current 30.0 A to the left along the x axis. A second long wire carries current 50.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of 2.00 C is moving with a velocity of 150iMm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (c) What If? A uniform electric field is applied to allow this particle to pass through this region undetected. Calculate the required vector electric field.arrow_forwardA proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning