Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 29, Problem 28P
(a)
To determine
To Show:
(b)
To determine
To Show:
Q factor is dimensionless.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A simple electric circuit consisting of a resistor, a capacitor, and an inductor is depicted as shown below. The charge on the capacitor
q(t) as a function of time can be computed as
9(1) = goe-Rt/(2L)
Cos
LC
2L
where t = time, q0 = the initial charge, R = the resistance, L = inductance, and C = capacitance. Use MATLAB to generate a plot of this
function from t= 0 to 0.8 with an increment of 0.001, given that q0= 10, R = 60, L = 9, and C = 0.00005. What is the maximum value
of q=
Blank 1? Express your answer to the nearest whole number.
Blank 1
Add your answer
An inductor with inductance L is connected to an AC source. If the AC source provides a voltage VL(t) = V0cos(omegat), what is the current IL(t) through the inductor as a function of time?
Calculate the voltage and current of the inductance and the voltage and current for the capacitance and draw a graph between the current and the voltage for the capacitance and inductance and the angle for each.
Chapter 29 Solutions
Physics for Scientists and Engineers
Ch. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 9PCh. 29 - Prob. 10P
Ch. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 56PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - Prob. 61PCh. 29 - Prob. 62PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - Prob. 65PCh. 29 - Prob. 66PCh. 29 - Prob. 67PCh. 29 - Prob. 68PCh. 29 - Prob. 69PCh. 29 - Prob. 70PCh. 29 - Prob. 72PCh. 29 - Prob. 73PCh. 29 - Prob. 74PCh. 29 - Prob. 75PCh. 29 - Prob. 76PCh. 29 - Prob. 77PCh. 29 - Prob. 78PCh. 29 - Prob. 79PCh. 29 - Prob. 80PCh. 29 - Prob. 81PCh. 29 - Prob. 82PCh. 29 - Prob. 83PCh. 29 - Prob. 84PCh. 29 - Prob. 85PCh. 29 - Prob. 86PCh. 29 - Prob. 87PCh. 29 - Prob. 88PCh. 29 - Prob. 89P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Do Kirchhoff’s rules apply to circuits that contain inductors and Capacitors?arrow_forwardThe emf of an ac source is given by v(t)=V0sint, where V0=100V and =200 . Find an expression that represents the output current of the source if it is connected across (a) a 20-pF capacitor, (b) a 20-mH inductor, and (c) a 50 resistor.arrow_forwardAt s1iat frequency is the reactance of a 20F capacitor equal to that of a 10-mH inductor?arrow_forward
- An ac source of voltage amplitude 10 V delivers electric energy at a rate of 0.80 W when its current output is 2.5 A. What is the phase angle between the emf and the current?arrow_forwardWhat is the resistance R in the circuit shown below if the amplitude of the ac through the inductor is 4.24 A?arrow_forwardAt 1000 Hz, the reactance of a 5.0-mH inductor is equal to the reactance of a particular capacitor. What is the capacitance of the capacitor?arrow_forward
- A 40-mH inductor is connected to a 60-Hz AC source whose voltage amplitude is 50 V. If an AC voltmeter is placed across the inductor, what does it read?arrow_forwardCan a circuit e1eent have both capacitance and inductance?arrow_forwardThe self-inductance and capacitance of an oscillating LC circuit are L = 20 mH and C = 1.0 F , respectively. (a) What is the frequency of the oscillation? (b) If the maximum potential difference the plates of the capacitor is 50 V, what is the maximum current in the circuit?arrow_forward
- The diagram shows a simple electric circuit consisting of a power source, a resistor, and an inductor. If voltage V is first applied at time t = 0, then the current I flowing through the circuit at time t is given by I as attached, where L is the inductance and R is the resistance. Use L’Hôpital’s Rule to find the formula for the current by fixing V and L and letting R approach 0 from the right.arrow_forwardThis problem concerns the electric circuit shown in the figure below. where C is the capacitance and L is the inductance, so A charged capacitor connected to an inductor causes a current to flow through the inductor until the capacitor is fully discharged. The current in the inductor, in turn, charges up the capacitor until the capacitor is fully charged again. If Q(t) is the charge on the capacitor at time t, and I is the current, then dQ dt If the circuit resistance is zero, then the charge Q and the current I in the circuit satisfy the differential equation dI 'dt + If L=1 henry, R=1 ohm, and C = 4 farads, find a formula for the charge when (a) Q (0) = 0 and Q (0) = 5: Q(t)= 4e^(-1/2) Capacitor L (b) Q(0) = 5 and Q (0) = 0: Q(t) = Resistor mamm DOUVID Inductor L I= 8²0+0=0 d²Q dt2 Then, just as as a spring can have a damping force which affects its motion, so can a circuit; this is introduced by the resistor, so that if the resistance of the resistor is R d²Q dQ dt +R dt² +9=0. www…arrow_forward7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY