Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 16P
(a)
To determine
The speed of the particle.
(b)
To determine
The mass of the particle.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For this question, we have to consider an experimental setup where charged particles (electrons or protons) are first accelerated by an electric field and then injected into a region of constant magnetic field with a field strength of 0.55 T. What is the potential difference, in volts, required to accelerate electrons to a speed of 5.8 * 10^(7) ? Also what is the radius of curvature, in meters, of the path of a proton accelerated through this same potential after the proton crosses into the region with the magnetic field?
This is not a graded question
The Tevatron accelerator at Fermilab (Illinois) is designed
to carry an 11-mA beam of protons (q = 1.6 × 10-19 C)
traveling at very nearly the speed of light (3.0 × 10$ m/s)
around a ring 6300 m in circumference. How many protons
are in the beam?
A particle with a charge -1.24X10^-8 C is moving with instantaneous velocity v=(4.19x10^4 m/s)i + (-3.85 x10^4m/s)j. What is the force (magnitude and direction) exerted on this particle by a magnetic field (1.40T)k?
Chapter 29 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 29.1 - An electron moves in the plane of this paper...Ch. 29.2 - Prob. 29.2QQCh. 29.4 - A wire carries current in the plane of this paper...Ch. 29.5 - (i) Rank the magnitudes of the torques acting on...Ch. 29 - Prob. 1OQCh. 29 - Prob. 2OQCh. 29 - Prob. 3OQCh. 29 - Prob. 4OQCh. 29 - Prob. 5OQCh. 29 - Prob. 6OQ
Ch. 29 - Prob. 7OQCh. 29 - Prob. 8OQCh. 29 - Prob. 9OQCh. 29 - Prob. 10OQCh. 29 - Prob. 11OQCh. 29 - Prob. 12OQCh. 29 - Prob. 13OQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQCh. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - At the equator, near the surface of the Earth, the...Ch. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Consider an electron near the Earths equator. In...Ch. 29 - Prob. 5PCh. 29 - A proton moving at 4.00 106 m/s through a...Ch. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - A proton travels with a speed of 5.02 106 m/s in...Ch. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - An accelerating voltage of 2.50103 V is applied to...Ch. 29 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 29 - Prob. 16PCh. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. An electron moves in a circular path...Ch. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - A cyclotron designed to accelerate protons has a...Ch. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - A wire carries a steady current of 2.40 A. A...Ch. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Consider the system pictured in Figure P28.26. A...Ch. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - A Hall-effect probe operates with a 120-mA...Ch. 29 - Prob. 55PCh. 29 - Prob. 56APCh. 29 - Prob. 57APCh. 29 - Prob. 58APCh. 29 - Prob. 59APCh. 29 - Prob. 60APCh. 29 - Prob. 61APCh. 29 - Prob. 62APCh. 29 - Prob. 63APCh. 29 - Prob. 64APCh. 29 - Prob. 65APCh. 29 - Prob. 66APCh. 29 - A proton having an initial velocity of 20.0iMm/s...Ch. 29 - Prob. 68APCh. 29 - Prob. 69APCh. 29 - Prob. 70APCh. 29 - Prob. 71APCh. 29 - Prob. 72APCh. 29 - Prob. 73APCh. 29 - Prob. 74APCh. 29 - Prob. 75APCh. 29 - Prob. 76APCh. 29 - Prob. 77CPCh. 29 - Prob. 78CPCh. 29 - Review. A wire having a linear mass density of...Ch. 29 - Prob. 80CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forward1m A charged particle with mass 2.974 x 10-30 Kg and a kinetic energy of 4 x 10-12 j are moving in the positive z direction and enter a magnetic field B = 1kT directed out of the plane of the page and extending from a = 0 to æ = 1.00m as shown in Figure. The charged particle follows the circular path as shown in the drawing with radius 4m. Ignore all relativistic effects. a). Calculate the charge with its sign d) What is the angular speed of the particle?arrow_forwardConsider an experimental setup where charged particles (electrons or protons) are first accelerated by an electric field and then injected into a region of constant magnetic field with a field strength of 0.45 T. 1. What is the potential difference, in volts, required in the first part of the experiment to accelerate electrons to a speed of 6.1 × 107 m/s? 2. Find the radius of curvature, in meters, of the path of a proton accelerated through this same potential after the proton crosses into the region with the magnetic field. 3. What is the ratio of the radii of curvature for a proton and an an electron traveling through this apparatus?arrow_forward
- A particle with charge q and kinetic energy K travels in a uniform magnetic field of magnitude B. If the particle moves in a circular path of radius R, find expressions for each of the following. (Use any variable or symbol stated above as necessary.) (a) its speed. V= (b) its mass m =arrow_forwardAt an instant in time, an electron has velocity, v = 100i - 300j + 200k km/s while it is in a magnetic field, B = 2i - 3j + 4k T. Find the acceleration of the electron at this instant. Use the vector table below to show any important vectors. Show only numerical results in the table. (m = 9.109 x 10*3" kg, q = -1.6 X 10*1º C) Vector i karrow_forwardA particle with charge 1.602 × 10-19 C in a magnetic field of 3.58 T travels in a circle of radius 3.14 m at a speed of 9.95 m/s. What is the particle's mass? Answer in units of kg.arrow_forward
- A positive charged particle carries a charge of 0.2 µC and moves with a kinetic energy of 0.09 J. It travels through a uniform magnetic field with B = 0.1 T. What is the mass of the particle if it moves in the magnetic field in a circular manner with a radius of 3.0 m?arrow_forwardA particle with mass 4x10-2 kg and charge +3 µC enters a region of space where there is a magnetic field of 1T that is perpendicular to the velocity of the particle. When the particle encounters the magnetic field, it experiences an acceleration of 12 m/s^2. What is the speed of the particle when it enters the magnetic-field region? Express your answer in meters per second.arrow_forwardA particle with mass 3×10−2 kgkg and charge +7 μCμC enters a region of space where there is a magnetic field of 1 TT that is perpendicular to the velocity of the particle. When the particle encounters the magnetic field, it experiences an acceleration of 17 m/s2m/s2 . What is the speed of the particle when it enters the magnetic-field region? Express your answer in meters per second.arrow_forward
- A proton (with charge of 1.6 x 10^-19 C and mass of 1.7*10^-27 kg) traveling at a speed of 53,045,750 m/s in the + x-direction enters a region of space where there is a magnetic field of strength 0.6 T in the - z-direction. What would be the radius of the circular motion that the proton would go into if it is "trapped" in this magnetic field region?arrow_forwardQ. 3: A proton moves through a uniform magnetic field given by B = (30 î – 205) mT. At a time t1, the proton has a velocity given by = the proton is FB (Vz î + (2000m/s)ĵ) and the magnetic force of (4 * 10-17N) k. At that instant, what is the velocity vx?arrow_forwardA beam of a particles (helium nuclei) is used to treat a tumor located 11.1 cm inside a patient. To penetrate to the tumor, the a particles must be accelerated to a speed of 0.558c, where c is the speed of light. (Ignore relativistic effects.) The mass of an a particle is 4.003 u and its charge is +2e. The cyclotron used to accelerate the beam has radius 1.50 m. What is the magnitude of the magnetic field? The mass of a proton is 1.6605×10-27 kg/u.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY