Concept explainers
CE Predict/Explain (a) If a thin liquid film floating on water has an index of refraction less than that of water will the film appear bright or dark in reflected light as its thickness goes to zero? (b) Choose the best explanation from among the following.
I. The film will appear bright because as the thickness of the film goes to zero the phase difference for reflected rays goes to zero
II The film will appear dark because there is a phase change at both interfaces, and this will cause destructive interference of the reflected rays
Want to see the full answer?
Check out a sample textbook solutionChapter 28 Solutions
Physics (5th Edition)
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
College Physics: A Strategic Approach (3rd Edition)
Campbell Biology (11th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
- A He—Ne laser beam is reflected from the surface of a CD onto a wall. The brightest spot is the reflected beam at an angle equal to the angle of incidence. However, fringes are also observed. If the wall is 1.50 m from the CD, and the first fringe is 0.600 m from the central maximum, what is the spacing of grooves on the CD?arrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon. (a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam? (b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84108 m?arrow_forwardUnreasonable Results An amateur astronomer wants to build a telescope with a diffraction limit that will allow him to see if there are people on the moons of Jupiter. (a) What diameter mirror is needed to be able to see 1.00 m detail on a Jovian Moon at a distance of 7.50108 km from Earth? The wavelength of light averages 600 nm. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- Figure 27.34 shows two glass slides illuminated by pure-wavelength light incident perpendicularly. The top slide touches the bottom slide at one end and rests on a 0.100-mm-diameter hair at the other end, forming a wedge of air. (a) How far apart are the dark bands, if the slides are 7.50 cm long and 589-nm light is used? (b) Is there any difference if the slides are made from crown or flint glass? Explain.arrow_forwardUnreasonable Results To save money on making military aircraft invisible to radar, an inventor decides to coat them with a non-reflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward(a) Find the angle of the third diffraction minimum for 633-nm light falling on a slit of width 20.0 m. (b) What slit width would place this minimum at 85.0°? Explicitly show how you follow the steps in Problem-Solving Strategies for Wave Opticsarrow_forward
- (a) As a soap bubble thins it becomes dark, because the path length difference becomes small compared with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less than one-fourth the wavelength, what is the thickest the bubble can be and appear dark at all visible wavelengths? Assume the same index of refraction as water. (b) Discuss the fragility of the film considering the thickness found.arrow_forward(a) A narrow beam of light containing yellow (580 nm) and green (550 nm} wavelengths goes from polystyrene to air, striking the surface at a 30.0° incident angle. What is the angle between the colors when they emerge? (b) How far would they have to travel to be separated by 1.00 mm?arrow_forwardA film of oil on water will appear dark when it is very thin, because the path length difference becomes small compared with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less than one-fourth the wavelength, what is the thickest the oil can be and appear dark at all visible wavelengths? Oil has an index of refraction of 1.40.arrow_forward
- The laser in a compact disc player must precisely follow the spiral track on CD, along which the distance between one loop of the spiral and the next is only about 1.25 m. Figure P38.29 (page 1186) shows how a diffraction grating is used to provide information to keep the beam on track. The laser light passes through a diffraction grating before it reaches the CD. The strong central maximum of the diffraction pattern is used to read the information in the track of pits. The two first-order side maxima are designed to fall on the flat surfaces on both sides of the information track and are used for steering. As long as both beams are reflecting from smooth, nonpitted .surfaces, they are detected with constant high intensity. If the main beam wanders off the track, however, one of the side beams begins to strike pits on the information track and the reflected light diminishes. This change is used with an electronic circuit to guide the beam back to the desired location. Assume the laser light has a wavelength of 780 11m and the diffraction grating is positioned 6.90 m from tike disk. Assume the first-order beams are to fall on the CD 0.400 m on either side of the information track. What should be the number of grooves per millimeter in the grating?arrow_forwardMany cells are transparent anti colorless. Structures of great interest in biology and medicine can be practically invisible to ordinary microscopy. To indicate the size and shape of cell structures, an interference micro-scope reveals a difference in index of refraction as a shift in interference fringes. The idea is exemplified in the following problem. An air wedge is formed between two glass plates in contact along one edge and slightly separated at the opposite edge as in Figure P37.37. When the plates are illuminated with monochromatic light from above, the reflected light has 85 dark fringes. Calculate the number of dark fringes that appear if water (n = 1.33) replaces the air between the plates.arrow_forwardUnreasonable Results (a) What visible wavelength has its fourth-order maximum at an angle of 25.0° when projected on a 25,000-line-per-centimeter diffraction grating? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning